Advertisements
Advertisements
प्रश्न
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
उत्तर
The given system can be written as
`[(1,-1,2),(2,0,1),(3,2,1)][(x),(y),(z)] = [(3),(1),(4)]`
AX = B
Where A = `[(1,-1,2),(2,0,1),(3,2,1)]`, X = `[(x),(y),(z)]` and B = `[(3),(1),(4)]`
|A| = `|(1,-1,2),(2,0,1),(3,2,1)|`
= 1(0 – 2) – (-1)(2 – 3) + 2(4 – 0)
= -2 – (-1)(-1) + 2(4)
= -2 – 1 + 8
= 5
[Aij] = `[(-2,-(-1),4),(-|(-1,2),(2,1)|,|(1,2),(3,1)|,-|(1,-1),(3,2)|),(|(-1,2),(0,1)|,-|(1,2),(2,1)|,|(1,-1),(2,0)|)]`
`= [(-2,1,4),(-(-1-4),(1-6),-(2+3)),((-1-0),-(1-4),(0+2))]`
`=> [(-2,1,4),(5,-5,-5),(-1,3,2)]`
adj A = `["A"_"ij"]^"T" = [(-2,5,-1),(1,-5,3),(4,-5,2)]`
`"A"^-1 = 1/|"A"|`(adj A)
`= 1/(5)[(-2,5,-1),(1,-5,3),(4,-5,2)]`
X = A-1B
`= 1/(5)[(-2,5,-1),(1,-5,3),(4,-5,2)][(3),(1),(4)]`
`=> 1/(5)[(-6+5-4),(3-5+12),(12-5+8)]`
`=> 1/(5)[(-5),(10),(15)]`
`[(x),(y),(z)] = [(-1),(2),(3)]`
∴ x = -1, y = 2, z = 3.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.
Fill in the blank :
If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
State whether the following statement is True or False:
Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
If A = `[(1,2),(3,-5)]`, then A-1 = ?
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______