मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

Solve by matrix inversion method: x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4

बेरीज

उत्तर

The given system can be written as

`[(1,-1,2),(2,0,1),(3,2,1)][(x),(y),(z)] = [(3),(1),(4)]`

AX = B

Where A = `[(1,-1,2),(2,0,1),(3,2,1)]`, X = `[(x),(y),(z)]` and B = `[(3),(1),(4)]`

|A| = `|(1,-1,2),(2,0,1),(3,2,1)|`

= 1(0 – 2) – (-1)(2 – 3) + 2(4 – 0)

= -2 – (-1)(-1) + 2(4)

= -2 – 1 + 8

= 5

[Aij] = `[(-2,-(-1),4),(-|(-1,2),(2,1)|,|(1,2),(3,1)|,-|(1,-1),(3,2)|),(|(-1,2),(0,1)|,-|(1,2),(2,1)|,|(1,-1),(2,0)|)]`

`= [(-2,1,4),(-(-1-4),(1-6),-(2+3)),((-1-0),-(1-4),(0+2))]`

`=> [(-2,1,4),(5,-5,-5),(-1,3,2)]`

adj A = `["A"_"ij"]^"T" = [(-2,5,-1),(1,-5,3),(4,-5,2)]`

`"A"^-1 = 1/|"A"|`(adj A)

`= 1/(5)[(-2,5,-1),(1,-5,3),(4,-5,2)]`

X = A-1B

`= 1/(5)[(-2,5,-1),(1,-5,3),(4,-5,2)][(3),(1),(4)]`

`=> 1/(5)[(-6+5-4),(3-5+12),(12-5+8)]`

`=> 1/(5)[(-5),(10),(15)]`

`[(x),(y),(z)] = [(-1),(2),(3)]`

∴ x = -1, y = 2, z = 3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Matrices and Determinants - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
पाठ 1 Matrices and Determinants
Exercise 1.3 | Q 2. (ii) | पृष्ठ १५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×