Advertisements
Advertisements
प्रश्न
Solve by matrix inversion method:
3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8
उत्तर
The given system can be written as
`[(3,-1,2),(2,1,-1),(1,3,-5)][(x),(y),(z)] = [(13),(3),(-8)]`
AX = B
Where A = `[(3,-1,2),(2,1,-1),(1,3,-5)]`, X = `[(x),(y),(z)]` and B = `[(13),(3),(-8)]`
|A| = `|(3,-1,2),(2,1,-1),(1,3,-5)|`
= 3(-5 + 3) – (-1) (-10 + 1) + 2 (6 – 1)
= 3(-2) + 1(-9) + 2(5)
= - 6 – 9 + 10
= - 5
[Aij] = `[(-2,-(-9),5),(-|(-1,2),(3,-5)|,|(3,2),(1,-5)|,-|(3,-1),(1,3)|),(|(-1,2),(1,-1)|,-|(3,2),(2,-1)|,|(3,-1),(2,1)|)]`
`= [(-2,9,5),(-(5-6),(-15-2),-(9+1)),((1-2),-(-3-4),(3+2))] => [(-2,9,5),(1,-17,-10),(-1,7,5)]`
adj A = `["A"_"ij"]^"T" = [(-2,1,-1),(9,-17,7),(5,-10,5)]`
`"A"^-1 = 1/|"A"|`(adj A)
`= 1/(-5)[(-2,1,-1),(9,-17,7),(5,-10,5)]`
X = A-1B
`= 1/(-5)[(-2,1,-1),(9,-17,7),(5,-10,5)][(13),(3),(-8)]`
`=> 1/(-5)[(-26+3+8),(117-51-56),(65-30-40)]`
`=> 1/(-5)[(-15),(10),(-5)]`
`[(x),(y),(z)] = [(3),(-2),(1)]`
∴ x = 3, y = -2, z = 1.
APPEARS IN
संबंधित प्रश्न
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
If A = `((-1,2),(1,-4))` then A(adj A) is
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.