Advertisements
Advertisements
प्रश्न
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
उत्तर
Let A = `[(1,-1,2),(-2,3,5),(-2,0,-1)]`
The co-factor of aij is given by Aij = (−1)i+j Mij
Now, M11 = `|(3,5),(0,-1)|` = − 3 − 0 = − 3
∴ A11 = (− 1)1+1(− 3) = − 3
M12 = `|(-2,5),(-2,-1)|` = 2 + 10 = 12
∴ A12 = (− 1)1+2(12) = − 12
M13 = `|(-2,3),(-2,0)|` = 0 + 6 = 6
∴ A13 = (− 1)1+3(6) = 6
M21 = `|(-1,2),(0,-1)|` = 1 − 0 = 1
∴ A21 = (− 1)2+1(1) = − 1
M22 = `|(1,2),(-2,-1)|` = − 1 + 4 = 3
∴ A22 = (− 1)2+2(3) = 3
M23 = `|(1,-1),(-2,0)|` = 0 − 2 = − 2
∴ A23 = (−1)2+3(− 2) = 2
M31 = `|(-1,2),(3,5)|` = − 5 − 6 = − 11
∴ A31 = (− 1)3+1(− 11) = − 11
M32 = `|(1,2),(-2,5)|` = 5 + 4 = 9
∴ A32 = (− 1)3+2(9) = − 9
M33 = `|(1,-1),(-2,3)|` = 3 − 2 = 1
∴ A33 = (− 1)3+3(1) = 1
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the matrix of the co-factor for the following matrix.
`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix by the adjoint method.
`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.
If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB =
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Check whether the following matrices are invertible or not:
`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)
If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).
If A = [aij]2×2, where aij = i – j, then A = ______
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
Solve by matrix inversion method:
2x – z = 0; 5x + y = 4; y + 3z = 5
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
If A = `((-1,2),(1,-4))` then A(adj A) is
The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.
If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If AB = I and B = AT, then _______.
If A = `[(-i, 0),(0, i)]`, then ATA is equal to
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0