Advertisements
Advertisements
प्रश्न
If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB =
पर्याय
`[(1, -10),(1, 20)]`
`[(1, 10),(-1, 20)]`
`[(1, 10),(2,- 5)]`
`[(1, 10),(-1, -20)]`
उत्तर
If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = `[(1, 10),(2,- 5)]`.
Notes
Option (C) has been modified.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`
Find the inverse of the following matrix by the adjoint method.
`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`
Find the inverses of the following matrices by the adjoint method:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the following matrix (if they exist):
`[(3,-10),(2,-7)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Find the inverse of A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 1),(7, 4)]`
If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α
If A is invertible matrix of order 3 and |A| = 5, then find |adj A|
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
If A = [aij]2×2, where aij = i – j, then A = ______
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
Weekly expenditure in an office for three weeks is given as follows. Assuming that the salary in all the three weeks of different categories of staff did not vary, calculate the salary for each type of staff, using the matrix inversion method.
Week | Number of employees | Total weekly salary (in ₹) |
||
A | B | C | ||
1st week | 4 | 2 | 3 | 4900 |
2nd week | 3 | 3 | 2 | 4500 |
3rd week | 4 | 3 | 4 | 5800 |
adj (AB) is equal to:
If A is an invertible matrix of order 2 then det (A-1) be equal
The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.