मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the inverse of A = [101023121] by elementary column transformations. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.

बेरीज

उत्तर

|A| = `|(1, 0, 1),(0, 2, 3),(1, 2, 1)|`

= 1(2 – 6) – 0 + 1)0 – 2)

= – 4 – 2

= – 6 ≠ 0

∴ A–1 exists.

Consider A–1A = I

∴ A–1 = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

Applying C3 → C3 – C1, we get

A–1 = `[(1, 0, 0),(0, 2, 3),(1, 2, 0)] = [(1, 0, -1),(0, 1, 0),(0, 0, 1)]`

Applying C2 ↔ C3, we get

A–1 = `[(1, 0, 0),(0, 3, 2),(1, 0, 2)] = [(1, -1, 0),(0, 0, 1),(0, 1, 0)]`

Applying C2 → C2 – C3, we get

A–1 = `[(1, 0, 0),(0, 1, 2),(1, -2, 2)] = [(1, -1, 0),(0, -1, 1),(0, 1, 0)]`

Applying C3 → C3 – 2C2, we get

A–1 = `[(1, 0, 0),(0, 1, 0),(1, -2, 6)] = [(1, -1, 2),(0, -1, 3),(0, 1, -2)]`

Applying C3 → `(1/6)` C3, we get

A–1 = `[(1, 0, 0),(0, 1, 0),(1, -2, 1)] = [(1, -1, 1/3),(0, -1, 1/2),(0, 1, -1/3)]`

Applying C1 → C1 – Cand C2 → C2 + 2C3, we get

A–1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)] = [(2/3, -1/3, 1/3),(-1/2, 0, 1/2),(1/3, 1/3, -1/3)]`

∴ A–1 = `(1)/(6)[(4, -2, 2),(-3, 0, 3),(2, 2, -2)]`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.5 [पृष्ठ ७२]

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.


Adjoint of `[(2, -3),(4, -6)]` is _______


Choose the correct alternative.

If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


Fill in the blank :

(AT)T = _______


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


Check whether the following matrices are invertible or not:

`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 1),(7, 4)]`


A = `[(cos alpha, - sin alpha,  0),(sin alpha, cos alpha,  0),(0, 0, 1)]`, then A−1 is


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).


Choose the correct alternative:

If A is a non singular matrix of order 3, then |adj (A)| =  ______


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


Find the inverse of the following matrix:

`[(1,-1),(2,3)]`


Find the inverse of the following matrix:

`[(3,1),(-1,3)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`  then, show that the inverse of A is A itself.


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.


If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]`  then, find p, q if Y = X-1


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


If A = `((-1,2),(1,-4))` then A(adj A) is


The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.


If A = `[(1,2),(3,-5)]`, then A-1 = ?


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If A = `[(x,1),(1,0)]` and A = A , then x = ______.


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If A–1  = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.


The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.


Choose the correct option:

If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`


If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×