Advertisements
Advertisements
प्रश्न
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
उत्तर
Given A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`
|A| = `-1|(-3,4),(-4,5)| - 2|(4,4),(4,5)| - 2|(4,-3),(4,-4)|`
= -1 [-15 + 16] - 2[20 - 16] - 2[-16 + 12]
= -1 [1] - 2[4] - 2[- 4]
= -1 - 8 + 8 ⇒ - 1 ≠ 0
[Aij] = `[(1,-4,-4),(-|(2,-2),(-4,5)|,|(-1,-2),(4,5)|,-|(-1,2),(4,-4)|),(|(2,-2),(-3,4)|,-|(-1,-2),(4,4)|,|(-1,2),(4,-3)|)]`
`= [(1,-4,-4),(-(10-8),(-5+8),-(4-8)),((8-6),-(-4+8),(3-8))]`
`= [(1,-4,-4),(-2,3,4),(2,-4,-5)]`
adj A = [Aij]T = `[(1,-2,2),(-4,3,-4),(-4,4,-5)]`
A-1 = `1/|"A"|` adj A
`= 1/(-1)[(1,-2,2),(-4,3,-4),(-4,4,-5)]`
`= -1[(1,-2,2),(-4,3,-4),(-4,4,-5)]`
`= [(-1,2,-2),(4,-3,4),(4,-4,5)]`
∴ A-1 = A
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
adj (AB) is equal to:
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.