Advertisements
Advertisements
प्रश्न
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
उत्तर
Given A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`
|A| = `-1|(-3,4),(-4,5)| - 2|(4,4),(4,5)| - 2|(4,-3),(4,-4)|`
= -1 [-15 + 16] - 2[20 - 16] - 2[-16 + 12]
= -1 [1] - 2[4] - 2[- 4]
= -1 - 8 + 8 ⇒ - 1 ≠ 0
[Aij] = `[(1,-4,-4),(-|(2,-2),(-4,5)|,|(-1,-2),(4,5)|,-|(-1,2),(4,-4)|),(|(2,-2),(-3,4)|,-|(-1,-2),(4,4)|,|(-1,2),(4,-3)|)]`
`= [(1,-4,-4),(-(10-8),(-5+8),-(4-8)),((8-6),-(-4+8),(3-8))]`
`= [(1,-4,-4),(-2,3,4),(2,-4,-5)]`
adj A = [Aij]T = `[(1,-2,2),(-4,3,-4),(-4,4,-5)]`
A-1 = `1/|"A"|` adj A
`= 1/(-1)[(1,-2,2),(-4,3,-4),(-4,4,-5)]`
`= -1[(1,-2,2),(-4,3,-4),(-4,4,-5)]`
`= [(-1,2,-2),(4,-3,4),(4,-4,5)]`
∴ A-1 = A
Hence proved.
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the adjoint of the following matrix.
`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.