Advertisements
Advertisements
प्रश्न
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
उत्तर
Given A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`
We know that (A-1)-1 = A
So we have to find inverse of A-1
`|"A"^-1| = |(1,0,3),(2,1,-1),(1,-1,1)|`
= 1(1 - 1)- 0(2 + 1) + 3(-2 - 1)
= 1(0) - 0(03 + 3(-3)
= 0 - 0 - 9 = - 9 ≠ 0
`["A"_"ij"^-1] = [(0,-3,-3),
(-|(0,3),(-1,1)|,|(1,3),(1,1)|,-|(1,0),(1,-1)|),
(|(0,3),(1,-1)|,-|(1,3),(2,-1)|,|(1,0),(2,1)|)]`
= `[(0,-3,-3),(-(0+3),1-3,-(-1-0)),(0-3,-(-1-6),(1-0))]`
`= [(0,-3,-3),(-3,-2,1),(-3,7,1)]`
adj A-1 = `["A"_"ij"^-1]^"T" = [(0,-3,-3),(-3,-2,7),(-3,1,1)]`
∴ (A-1)-1 = `1/|"A"^-1|` (adj A-1)
`= 1/(-9)[(0,-3,-3),(-3,-2,7),(-3,1,1)]`
i.e., A = `1/9[(0,3,3),(3,2,-7),(3,-1,-1)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by the adjoint method.
`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`
Find the inverse of the following matrix (if they exist):
`((2,1),(1,-1))`
Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.
If A is a no singular matrix, then det (A–1) = _______
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.