Advertisements
Advertisements
प्रश्न
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
उत्तर
Given A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`
We know that (A-1)-1 = A
So we have to find inverse of A-1
`|"A"^-1| = |(1,0,3),(2,1,-1),(1,-1,1)|`
= 1(1 - 1)- 0(2 + 1) + 3(-2 - 1)
= 1(0) - 0(03 + 3(-3)
= 0 - 0 - 9 = - 9 ≠ 0
`["A"_"ij"^-1] = [(0,-3,-3),
(-|(0,3),(-1,1)|,|(1,3),(1,1)|,-|(1,0),(1,-1)|),
(|(0,3),(1,-1)|,-|(1,3),(2,-1)|,|(1,0),(2,1)|)]`
= `[(0,-3,-3),(-(0+3),1-3,-(-1-0)),(0-3,-(-1-6),(1-0))]`
`= [(0,-3,-3),(-3,-2,1),(-3,7,1)]`
adj A-1 = `["A"_"ij"^-1]^"T" = [(0,-3,-3),(-3,-2,7),(-3,1,1)]`
∴ (A-1)-1 = `1/|"A"^-1|` (adj A-1)
`= 1/(-9)[(0,-3,-3),(-3,-2,7),(-3,1,1)]`
i.e., A = `1/9[(0,3,3),(3,2,-7),(3,-1,-1)]`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
Adjoint of `[(2, -3),(4, -6)]` is _______
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
Fill in the blank :
(AT)T = _______
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
State whether the following is True or False :
Singleton matrix is only row matrix.
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
If A is invertible matrix of order 3 and |A| = 5, then find |adj A|
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.