मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following : If A = [2-33-2-14],B=[-3412-1-3], verify (3A – 5BT)T = 3AT – 5B. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.

बेरीज

उत्तर

3A – 5BT = `3[(2, -3),(3, -2),(-1, 4)] -[(-3, 2),(4, -1),(1, -3)]`

= `[(6, -),(9, -6),(-3, 12)] - [(-15, 10),(20, -5),(5, -15)]`

= `[(6 + 15, -9 - 10),(9 - 20, -6 + 5),(-3 - 5, 12 + 15)]`

∴ 3A – 5BT = `[(21, -19),(-11, -1),(-8, 27)]`

∴ (3A – 5BT)T = `[(21, -11, -8),(-19, -1, 27)]`     ...(i)

3AT – 5B = `3[(2, 3, -1),(-3, -2, 4)] - 5[(-3, 4, 1),(2, -1, -3)]`

= `[(6, 9, -3),(-9, 16, 12)] - [(-15, 20, 5),(10, -5, -15)]`

= `[(6 + 15, 9 - 20, -3 - 5),(-9 - 10, -6 + 5, 12 + 15)]`

= `[(2, -11, -8),(-19, -1, 27)]`      ...(ii)
From (i) and (ii), we get
(3A – 5BT)T = 3AT – 5B.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Miscellaneous Exercise 2 [पृष्ठ ८४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Matrices
Miscellaneous Exercise 2 | Q 4.05 | पृष्ठ ८४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the co-factor of the element of the following matrix:

`[(-1, 2),(-3, 4)]`


Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix (if they exist):

`[(3,-10),(2,-7)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


State whether the following is True or False :

Singleton matrix is only row matrix.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


Check whether the following matrices are invertible or not:

`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]`  then, find p, q if Y = X-1


Solve by matrix inversion method:

3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If A2 - A + I = 0, then A-1 = ______.


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×