मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If A = [30003003], then |A| |adj A| = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______

पर्याय

  • 33

  • 39 

  • 36

  • 327

MCQ
रिकाम्या जागा भरा

उत्तर

39 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.2: Matrics - MCQ

संबंधित प्रश्‍न

Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method


Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find the inverse of the following matrix by the adjoint method.

`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix.

`[(2,0,-1),(5,1,0),(0,1,3)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.


Fill in the blank :

If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`


Find the inverse of the following matrix:

`[(1,-1),(2,3)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]`  then, find p, q if Y = X-1


The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is


If A and B non-singular matrix then, which of the following is incorrect?


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.


If A–1  = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.


Choose the correct option:

If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`


If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×