Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
उत्तर १
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
∴ A = `|(1, 2, -2), (0, -2, 1), (-1, 3, 0)|`
= `1|(-2, 1), (3, 0)| -2|(0, 1),(-1, 1)| -2|(0, -2), (-1, 3)|`
∴ | A | = 1( 0 - 3 ) -2( 0 + 1 ) - 2( 0 - 2 )
= - 3 - 2 + 4
= -1 ≠ 0
∴ A-1 exists
We have
AA-1 = I
∴ `[(1, 2, -2), (0, -2, 1), (-1, 3, 0)] "A"^(-1) = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]`
R3 → R3 + R1
`[(1, 2, -2), (0, -2, 1), (0, 5, -2)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 0, 1)]`
R3 → R3 + 2R2
`[(1, 2, -2), (0, -2, 1), (0, 1, 0)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 2, 1)]`
R2 ↔ R3
`[(1, 2, -2), (0, 1, 0), (0, -2, 1)] "A"^-1 = [(1, 0, 0), (1, 2, 1), (0, 1, 0)]`
R1 → R1 - 2R2, R3 → R3 + 2R2
`[(1, 0, -2), (0, 1, 0), (0, 1, )]"A"^-1 = [(-1, -4, -2), (1, 2, 1), (2, 5, 2)]`
R1 → R1 + 2R3
`[(1, 0, 0), (0, 1, 0), (0, 0, 1)]"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`
∴ `"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`
उत्तर २
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
∴ A = `|(1, 2, -2), (0, -2, 1), (-1, 3, 0)|`
= `1|(-2, 1), (3, 0)| -2|(0, 1),(-1, 1)| -2|(0, -2), (-1, 3)|`
∴ | A | = 1( 0 - 3 ) -2( 0 + 1 ) - 2( 0 - 2 )
= - 3 - 2 + 4
= -1 ≠ 0
∴ A-1 exists
We have
AA-1 = I
∴ `[(1, 2, -2), (0, -2, 1), (-1, 3, 0)] "A"^(-1) = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]`
R3 → R3 + R1
`[(1, 2, -2), (0, -2, 1), (0, 5, -2)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 0, 1)]`
R3 → R3 + 2R2
`[(1, 2, -2), (0, -2, 1), (0, 1, 0)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 2, 1)]`
R2 ↔ R3
`[(1, 2, -2), (0, 1, 0), (0, -2, 1)] "A"^-1 = [(1, 0, 0), (1, 2, 1), (0, 1, 0)]`
R1 → R1 - 2R2, R3 → R3 + 2R2
`[(1, 0, -2), (0, 1, 0), (0, 1, )]"A"^-1 = [(-1, -4, -2), (1, 2, 1), (2, 5, 2)]`
R1 → R1 + 2R3
`[(1, 0, 0), (0, 1, 0), (0, 0, 1)]"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`
∴ `"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`
उत्तर ३
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
∴ A = `|(1, 2, -2), (0, -2, 1), (-1, 3, 0)|`
= `1|(-2, 1), (3, 0)| -2|(0, 1),(-1, 1)| -2|(0, -2), (-1, 3)|`
∴ | A | = 1( 0 - 3 ) -2( 0 + 1 ) - 2( 0 - 2 )
= - 3 - 2 + 4
= -1 ≠ 0
∴ A-1 exists
We have
AA-1 = I
∴ `[(1, 2, -2), (0, -2, 1), (-1, 3, 0)] "A"^(-1) = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]`
R3 → R3 + R1
`[(1, 2, -2), (0, -2, 1), (0, 5, -2)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 0, 1)]`
R3 → R3 + 2R2
`[(1, 2, -2), (0, -2, 1), (0, 1, 0)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 2, 1)]`
R2 ↔ R3
`[(1, 2, -2), (0, 1, 0), (0, -2, 1)] "A"^-1 = [(1, 0, 0), (1, 2, 1), (0, 1, 0)]`
R1 → R1 - 2R2, R3 → R3 + 2R2
`[(1, 0, -2), (0, 1, 0), (0, 1, )]"A"^-1 = [(-1, -4, -2), (1, 2, 1), (2, 5, 2)]`
R1 → R1 + 2R3
`[(1, 0, 0), (0, 1, 0), (0, 0, 1)]"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`
∴ `"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`