हिंदी

Find the inverse of the following matrix by elementary row transformations if it exists. A = (1, 2, -2), (0, -2, 1), (-1, 3, 0) -

Advertisements
Advertisements

प्रश्न

Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`

योग

उत्तर १

`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`

∴ A = `|(1, 2, -2), (0, -2, 1), (-1, 3, 0)|`

       = `1|(-2, 1), (3, 0)| -2|(0, 1),(-1, 1)| -2|(0, -2), (-1, 3)|`

∴ | A | = 1( 0 - 3 ) -2( 0 + 1 ) - 2( 0 - 2 )
           = - 3 - 2 + 4
           = -1 ≠ 0
∴ A-1 exists
    We have

                       AA-1 = I

∴ `[(1, 2, -2), (0, -2, 1), (-1, 3, 0)] "A"^(-1) = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]`

R3 → R3 + R1

`[(1, 2, -2), (0, -2, 1), (0, 5, -2)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 0, 1)]`

R3 → R3 + 2R2

`[(1, 2, -2), (0, -2, 1), (0, 1, 0)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 2, 1)]`

R2 ↔ R3

`[(1, 2, -2), (0, 1, 0), (0, -2, 1)] "A"^-1 = [(1, 0, 0), (1, 2, 1), (0, 1, 0)]`

R1 → R1 - 2R2, R3 → R3 + 2R2

`[(1, 0, -2), (0, 1, 0), (0, 1,   )]"A"^-1 = [(-1, -4, -2), (1, 2, 1), (2, 5, 2)]`

R1 →  R1 + 2R3

`[(1, 0, 0), (0, 1, 0), (0, 0, 1)]"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`

∴ `"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`

shaalaa.com

उत्तर २

`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`

∴ A = `|(1, 2, -2), (0, -2, 1), (-1, 3, 0)|`

       = `1|(-2, 1), (3, 0)| -2|(0, 1),(-1, 1)| -2|(0, -2), (-1, 3)|`

∴ | A | = 1( 0 - 3 ) -2( 0 + 1 ) - 2( 0 - 2 )
           = - 3 - 2 + 4
           = -1 ≠ 0
∴ A-1 exists
    We have

                       AA-1 = I

∴ `[(1, 2, -2), (0, -2, 1), (-1, 3, 0)] "A"^(-1) = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]`

R3 → R3 + R1

`[(1, 2, -2), (0, -2, 1), (0, 5, -2)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 0, 1)]`

R3 → R3 + 2R2

`[(1, 2, -2), (0, -2, 1), (0, 1, 0)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 2, 1)]`

R2 ↔ R3

`[(1, 2, -2), (0, 1, 0), (0, -2, 1)] "A"^-1 = [(1, 0, 0), (1, 2, 1), (0, 1, 0)]`

R1 → R1 - 2R2, R3 → R3 + 2R2

`[(1, 0, -2), (0, 1, 0), (0, 1,   )]"A"^-1 = [(-1, -4, -2), (1, 2, 1), (2, 5, 2)]`

R1 →  R1 + 2R3

`[(1, 0, 0), (0, 1, 0), (0, 0, 1)]"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`

∴ `"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`

shaalaa.com

उत्तर ३

`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`

∴ A = `|(1, 2, -2), (0, -2, 1), (-1, 3, 0)|`

       = `1|(-2, 1), (3, 0)| -2|(0, 1),(-1, 1)| -2|(0, -2), (-1, 3)|`

∴ | A | = 1( 0 - 3 ) -2( 0 + 1 ) - 2( 0 - 2 )
           = - 3 - 2 + 4
           = -1 ≠ 0
∴ A-1 exists
    We have

                       AA-1 = I

∴ `[(1, 2, -2), (0, -2, 1), (-1, 3, 0)] "A"^(-1) = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]`

R3 → R3 + R1

`[(1, 2, -2), (0, -2, 1), (0, 5, -2)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 0, 1)]`

R3 → R3 + 2R2

`[(1, 2, -2), (0, -2, 1), (0, 1, 0)] "A"^-1 = [(1, 0, 0), (0, 1, 0), (1, 2, 1)]`

R2 ↔ R3

`[(1, 2, -2), (0, 1, 0), (0, -2, 1)] "A"^-1 = [(1, 0, 0), (1, 2, 1), (0, 1, 0)]`

R1 → R1 - 2R2, R3 → R3 + 2R2

`[(1, 0, -2), (0, 1, 0), (0, 1,   )]"A"^-1 = [(-1, -4, -2), (1, 2, 1), (2, 5, 2)]`

R1 →  R1 + 2R3

`[(1, 0, 0), (0, 1, 0), (0, 0, 1)]"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`

∴ `"A"^-1 = [(3, 6, 2), (1, 2, 1), (2, 5, 2)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×