मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fill in the blank : If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank :

If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______

रिकाम्या जागा भरा

उत्तर

If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = 3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Miscellaneous Exercise 2 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Matrices
Miscellaneous Exercise 2 | Q 2.05 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Find the inverse of the following matrix (if they exist):

`[(2,0,-1),(5,1,0),(0,1,3)]`


Choose the correct answer from the given alternatives in the following question:

The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is


Choose the correct answer from the given alternatives in the following question:

For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Choose the correct alternative.

If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______


Fill in the blank :

If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(1, -1),(2, 3)]`


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1 


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


Find the inverse of the following matrix:

`[(1,-1),(2,3)]`


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


Solve by matrix inversion method:

2x + 3y – 5 = 0; x – 2y + 1 = 0.


The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.


The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is


If A = `((-1,2),(1,-4))` then A(adj A) is


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×