मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the inverse of the following matrix by elementary row transformations if it exists. A=[[1,2,-2],[0,-2,1],[-1,3,0]] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`

बेरीज

उत्तर

`A=[[1,2,-2],[0,-2,1],[-1,3,0]]`

`therefore A=|[1,2,-2],[0,-2,1],[-1,3,0]|`

`=1|[-2,1],[3,0]|-2|[0,1],[-1,1]|-2|[0,-2],[-1,3]|`

`|A|=1(0-3)-2(0+1)-2(0-2)`

`=-3-2+4`

`=-1!=0`

`therefore A^(-1) " exist"`

We have 

`A A^(-1)=I`

`[[1,2,-2],[0,-2,1],[-1,3,0]]A^(-1)=[[1,0,0],[0,1,0],[0,0,1]]`

`R_3->R_3+R_1`

`[[1,2,-2],[0,-2,1],[0,5,-2]]A^(-1)=[[1,0,0],[0,1,0],[1,0,1]]`

`R_3->R_3+2R_2`

`[[1,2,-2],[0,-2,1],[0,1,-0]]A^(-1)=[[1,0,0],[0,1,0],[1,2,1]]`

`R_2 harr R_3`

`[[1,2,-2],[0,1,0],[0,-2,1]]A^(-1)=[[1,0,0],[1,2,1],[0,1,0]]`

`R_1->R_1-2R_2 "   "  R3->R_3+2R_2`

`[[1,0,-2],[0,1,0],[0,0,1]]A^(-1)=[[-1,-4,-2],[1,2,1],[2,5,2]]`

`R_1->R_1+2R_3`

`[[1,0,0],[0,1,0],[0,0,1]]A^(-1)=[[3,6,2],[1,2,1],[2,5,2]]`

`A^(-1)=[[3,6,2],[1,2,1],[2,5,2]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५४]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.


Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix.

`[(1,2),(2,-1)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Find the inverse of the following matrix (if they exist):

`((1,3),(2,7))`


Find the inverse of the following matrix (if they exist):

`[(2,1),(7,4)]`


Find the inverse of the following matrix (if they exist):

`[(3,-10),(2,-7)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


Adjoint of `[(2, -3),(4, -6)]` is _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


State whether the following is True or False :

A = `[(2, 1),(10, 5)]` is invertible matrix.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______


For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.


If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


adj (AB) is equal to:


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


If A = `((-1,2),(1,-4))` then A(adj A) is


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.


If A = `[(x,1),(1,0)]` and A = A , then x = ______.


If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______ 


The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.


If A = `[(2,  -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.


Choose the correct option:

If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`


Find the inverse of the matrix A by using adjoint method.

where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`


A–1 exists if |A| = 0.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2)  l_2` where AT is transpose of A.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×