मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The Sum of Three Numbers is 6. If We Multiply the Third Number by 3 and Add It to the Second Number We Get 11. by Adding First and Third Numbers We Get a Number, Which is Double than the Second Numbe - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.

बेरीज

उत्तर

Let the first , second & third number be x, y, z respectively 

Given, 

∴ x + y + z = 6

y + 3z = 11

x + z = 2y or x - 2y + z = 0

Step 1

write equation as AX = B 

A = `[(1,1,1),(0,1,3),(1,-2,1)] , "X" = [(x),(y),(z)] , B = [(6),(11),(0)]`

Hence A  = ` [(1,1,1),(0,1,3),(1,-2,1)] ,X = [(x),(y),(z)] &B= [(6),(11),(0)]`

Step 2

calculate |A| 

|A| = `[(1,1,1),(0,1,3),(1,-2,1)]`

    = 1(1 + 6) - 0 (1 + 2) + 1(3 + 1)

    = 7 + 2

    = 9

So,  |A| ≠0

∴ The system of equation is consistent &  has a unique solutions

Now , AX = B 

         X = A-1

 Hence A =` [(1,1,1),(0,1,3),(1,-2,1)] ,X = [(x),(y),(z)] &B= [(6),(11),(0)]`

= 1 (1+6)-0(1+2)+1(3-1)

=7+2

=9≠0

Since determinant is not equal to O , A-1 exists

Now find adj (A)

now AX = B 

X = A-1

Step 3 

Calculating X= A-1

Calculating  A-1

Now  A-1 = `1/|A| `adj (A) 

adj A = `[(A_11,A_12,A_ 13) ,(A_21,A_22,A_23),(A_31 ,A_32,A_33)]^'=[(A_11,A_21,A_31) , (A_12,A_22,A_32), (A_13,A_23,A_33)]`

A = `[(1,-1,2) ,(3,4,-5), (2,-1,3)]`

A11 = 1 × 1-3×(-2)=1+6=7

A12 = - [0×1-3×1]=-(-3)=3

A13 =- 0×(-2) -1×1=-1

A21 = [1×1-(-2)×1]=-[1+2]=-3

A22=1×1-1×1=1-1=0

A23 = [1×(-2)-1×1]=-[-2-1]=-(-3)=3

A31 = 1×3-1×1=3-1=2

A32 =-[1×3-0×1]=-[3-0]=-3

A33=1×1-1×0=1-0=1

Hence , adj (A) = `[(7,-3,2),(3,0,-3),(-1,3,1)]`

Now , 

A-1 = `1/|A|` adj (A) 

A-1  =`1/9[(7,-3,2),(3,0,-3),(-1,3,1)]` 

Solution of given system of equations is 

X = A-1 

` [(x),(y),(z)] = 1/9 [(7,-3,2),(3,0,-3),(-1,3,1)] [(6),(11),(0)]`

` [(x),(y),(z)] = 1/9 [(42,-33,+0),(18,+0,+0),(-6,+33,+0)]`

` [(x),(y),(z)] = 1/9 [(9),(18),(27)]`

` [(x),(y),(z)] = [(1),(2),(3)]`

∴ x = 1, y = 2, z = 3 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Miscellaneous exercise 2 (B) [पृष्ठ ६३]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the co-factor of the element of the following matrix:

`[(-1, 2),(-3, 4)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


Find the inverse of the following matrix.

`[(2,0,-1),(5,1,0),(0,1,3)]`


Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.


Find the inverse of the following matrix (if they exist):

`((1,3),(2,7))`


Choose the correct answer from the given alternatives in the following question:

For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______


For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.


If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


If A is invertible matrix of order 3 and |A| = 5, then find |adj A|


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


Find the adjoint of matrix A = `[(6, 5),(3, 4)]`


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


Find the inverse of the following matrix:

`[(1,-1),(2,3)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If A = `[(x,1),(1,0)]` and A = A , then x = ______.


If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______ 


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.


If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______ 


If A–1  = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.


If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =


Find the inverse of the matrix A by using adjoint method.

where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2)  l_2` where AT is transpose of A.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×