मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the inverse of the following matrices by the adjoint method [2-245]. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.

बेरीज

उत्तर

Let A = `[(2, -2),(4, 5)]`

∴ |A| = `[(2, -2),(4, 5)]` = 10 + 8 = 18 ≠ 0

∴ A–1 exists.
A11 = (– 1)1+1 M11 = (1)(5) = 5
A12 = (– 1)1+2 M12 = (– 1)(4) = – 4
A21 = (– 1)2+1 M21 = (– 1)(– 2) = 2
A22 = (– 1)2+2 M22 = (1)(2) = 2
∴  The matrix of the co-factors is

[Aij]2x2 = `[("A"_11, "A"_12),("A"_21, "A"_22)] = [(5, -4),(2, 2)]`

Now adj A = `["A"_"ij"]_(2xx2)^"T" = [(5, 2),(-4, 2)]`

∴ A–1 = `(1)/|"A"|("adj A")`

= `(1)/(18)[(5, 2),(-4, 2)]`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.5 [पृष्ठ ७२]

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the inverse of the following matrix (if they exist):

`((1,3),(2,7))`


Choose the correct answer from the given alternatives in the following question:

The inverse of a symmetric matrix is


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1 


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


Find the adjoint of the matrix A = `[(2,3),(1,4)]`


Find the inverse of the following matrix:

`[(3,1),(-1,3)]`


If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`  then, show that the inverse of A is A itself.


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


Which of the following matrix has no inverse


The inverse matrix of `((3,1),(5,2))` is


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______ 


If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If A = `[(2,  -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.


A–1 exists if |A| = 0.


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×