Advertisements
Advertisements
प्रश्न
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
उत्तर
A'B' = `[(6, 5),(5, 6)]^' [(11, 0),(0, 11)]^'`
= `[(6, 5),(5, 6)] [(11, 0),(0, 11)]`
= `[(66 + 0, 0 + 55),(55 + 0, 0 + 66)]`
= `[(66, 55),(55, 66)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Find the inverse of A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Adjoint of `[(2, -3),(4, -6)]` is _______
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.
If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.
If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
If A is invertible matrix of order 3 and |A| = 5, then find |adj A|
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
Find the inverse of the following matrix:
`[(3,1),(-1,3)]`
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______
If A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.