Advertisements
Advertisements
प्रश्न
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
पर्याय
`[(4, 8, 3),(2, 1,6),(0, 2, 1)]`
`[(1, -1, 0),(-2, 3, -4),(-2, 3, -3)]`
`[(11, 9, 3),(1, 2, 8),(6, 9, 1)]`
`[(1, -2, 1),(-1, 3, 3),(-2, 3, -3)]`
उत्तर
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is `bbunderline([(1, -1, 0),(-2, 3, -4),(-2, 3, -3)])`.
Explanation:
`M_11 = |(-3, 4), (-1, 1) = -3 + 4 = 1|`
`M_12 = |(2, 4), (0, 1)| = 2 + 0 = 2`
`M_13 = |(2, -3), (0, -1)| = -2 + 0 = -2`
`M_21 = |(-3, -1), (-1, 1)| = -3 + 4 = 1`
`M_22 = |(3, 4), (0, 1)| = 3 - 0 = 3`
`M_23 = |(3, -3), (0, -1)| = -3 + 0 = 3`
`M_31 = |(-3, 4), (-3, 4)| = 12 - 8 = 4`
`M_32 = |(3, 4), (2, 4)| = 12 - 8 = 4`
`M_33 = |(3, -3), (2, -3)| = -9 + 6 = 3`
A11 = −1
A12 = −2
A13 = −2
A21 = −1
A22 = 3
A23 = 3
A31 = 0
A32 = −4
A33 = −3
[Cofactor A] = `[(-1, -2, -2), (-1, 3, 3), (0, -4, -3)]`
Adj (A) = (Cof A)T
`[(-1, -1, 0), (-2, 3, -4), (-2, 3, -3)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1
If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).
If A = [aij]2×2, where aij = i – j, then A = ______
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
If A = `((-1,2),(1,-4))` then A(adj A) is
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If AB = I and B = AT, then _______.
The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
A–1 exists if |A| = 0.
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.
If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2) l_2` where AT is transpose of A.