Advertisements
Advertisements
Question
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
Options
`[(4, 8, 3),(2, 1,6),(0, 2, 1)]`
`[(1, -1, 0),(-2, 3, -4),(-2, 3, -3)]`
`[(11, 9, 3),(1, 2, 8),(6, 9, 1)]`
`[(1, -2, 1),(-1, 3, 3),(-2, 3, -3)]`
Solution
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is `bbunderline([(1, -1, 0),(-2, 3, -4),(-2, 3, -3)])`.
Explanation:
`M_11 = |(-3, 4), (-1, 1) = -3 + 4 = 1|`
`M_12 = |(2, 4), (0, 1)| = 2 + 0 = 2`
`M_13 = |(2, -3), (0, -1)| = -2 + 0 = -2`
`M_21 = |(-3, -1), (-1, 1)| = -3 + 4 = 1`
`M_22 = |(3, 4), (0, 1)| = 3 - 0 = 3`
`M_23 = |(3, -3), (0, -1)| = -3 + 0 = 3`
`M_31 = |(-3, 4), (-3, 4)| = 12 - 8 = 4`
`M_32 = |(3, 4), (2, 4)| = 12 - 8 = 4`
`M_33 = |(3, -3), (2, -3)| = -9 + 6 = 3`
A11 = −1
A12 = −2
A13 = −2
A21 = −1
A22 = 3
A23 = 3
A31 = 0
A32 = −4
A33 = −3
[Cofactor A] = `[(-1, -2, -2), (-1, 3, 3), (0, -4, -3)]`
Adj (A) = (Cof A)T
`[(-1, -1, 0), (-2, 3, -4), (-2, 3, -3)]`
APPEARS IN
RELATED QUESTIONS
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverse of the following matrix.
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Adjoint of `[(2, -3),(4, -6)]` is _______
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.
Which of the following matrix has no inverse
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0
Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.