Advertisements
Advertisements
Question
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
Solution
Let A = `[(1,2,3),(0,2,4),(0,0,5)]`
|A| = `|(1,2,3),(0,2,4),(0,0,5)|`
`= 1|(2,4),(0,5)| - 2|(0,4),(0,5)| + 3|(0,2),(0,0)|`
= 1[10 - 0] - 2[0 - 0] + 3[0 - 0]
= 10 - 0 + 0
= 10
[Aij] = `[(10,0,0),(-|(2,3),(0,5)|,|(1,3),(0,5)|,-|(1,2),(0,0)|),(|(2,3),(2,4)|,-|(1,3),(0,4)|,|(1,2),(0,2)|)]`
`= [(10,0,0),(-(10 - 0),(5-0),0),(8-6,-(4-0),2)]`
`= [(10,0,0),(-10,5,0),(2,-4,2)]`
adj A = [Aij]T = `[(10,-10,2),(0,5,-4),(0,0,2)]`
`"A"^-1 = 1/|"A"|`adj A
`= 1/10[(10,-10,2),(0,5,-4),(0,0,2)]`
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`