English

Find the Inverse of the Matrix ⎡ ⎢ ⎣ 1 2 3 1 1 5 2 4 7 ⎤ ⎥ ⎦ by Adjoint Method - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method

Sum

Solution

Let A = `[(1       2     3),(1     1     5),(2     4     7)]`

A11 = (-1)1+1 M11 = (-1)2 (7 - 20) = -13 

A12 = (-1 )1+2

M12 = (-1)3 (7 - 10) = 3 
A13 = (-1 )1+3

M13 = (-1)4 (4 - 2) = 2 

A21 = (-1 )2+1 M21 = (-1)3 (14 - 12) = -2 
A22 = (-1 )2+2 M22 = (-1)4 (7 - 6) = 1 
A23 = (-1 )2+3 M23 = (-1)5 (4 - 4) = 0
A31 = (-1 ) 3+1 M31 = (-1)4 (10 - 3) = 7 
A32 = (-1 )3+2 M32 = (-1)5 (5 - 3) = -2
A33 = (-1 )3+3 M33 = (-1)6 (1 - 2) = -1

∴ Matrix of cofactor = `[(-13,3,2),(-2,1,0),(7,-2, -1)]`

Adj A = Transpose of the cofactor matrix [cij]

i.e. Adj A = [cij]' = `[(-13,-2,7),(3,1 ,-2),(2,0,-1)]`

Now , determinant of A is |A| = `[(1,2,3),(1 ,1, 5),(2 ,4 ,7)]`

= 1(7 - 20) - 2(7 - 10) + 3(4 - 2)

= 1(-13) - 2(-3) + 3(2)

= -13 + 6 + 6 = -1

∴ |A| = -1 ≠ 0

Now inverse of A is A-1 = `1/|"A"|` × Adj A

= `1/-1 [(-13,-2,7),(3,1,-2),(2,0,-1)]`

∴ A-1 = `[(13,2,-7),(-3,-1,2),(-2,0,1)]`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Choose the correct answer from the given alternatives in the following question:

If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is


If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.


Choose the correct alternative.

If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______


If A is a no singular matrix, then det (A–1) = _______


Fill in the blank :

If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


State whether the following is True or False :

Singleton matrix is only row matrix.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


The inverse matrix of `((3,1),(5,2))` is


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.


If A = `[(2,  -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.


If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×