हिंदी

Find the Inverse of the Matrix ⎡ ⎢ ⎣ 1 2 3 1 1 5 2 4 7 ⎤ ⎥ ⎦ by Adjoint Method - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method

योग

उत्तर

Let A = `[(1       2     3),(1     1     5),(2     4     7)]`

A11 = (-1)1+1 M11 = (-1)2 (7 - 20) = -13 

A12 = (-1 )1+2

M12 = (-1)3 (7 - 10) = 3 
A13 = (-1 )1+3

M13 = (-1)4 (4 - 2) = 2 

A21 = (-1 )2+1 M21 = (-1)3 (14 - 12) = -2 
A22 = (-1 )2+2 M22 = (-1)4 (7 - 6) = 1 
A23 = (-1 )2+3 M23 = (-1)5 (4 - 4) = 0
A31 = (-1 ) 3+1 M31 = (-1)4 (10 - 3) = 7 
A32 = (-1 )3+2 M32 = (-1)5 (5 - 3) = -2
A33 = (-1 )3+3 M33 = (-1)6 (1 - 2) = -1

∴ Matrix of cofactor = `[(-13,3,2),(-2,1,0),(7,-2, -1)]`

Adj A = Transpose of the cofactor matrix [cij]

i.e. Adj A = [cij]' = `[(-13,-2,7),(3,1 ,-2),(2,0,-1)]`

Now , determinant of A is |A| = `[(1,2,3),(1 ,1, 5),(2 ,4 ,7)]`

= 1(7 - 20) - 2(7 - 10) + 3(4 - 2)

= 1(-13) - 2(-3) + 3(2)

= -13 + 6 + 6 = -1

∴ |A| = -1 ≠ 0

Now inverse of A is A-1 = `1/|"A"|` × Adj A

= `1/-1 [(-13,-2,7),(3,1,-2),(2,0,-1)]`

∴ A-1 = `[(13,2,-7),(-3,-1,2),(-2,0,1)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the co-factor of the element of the following matrix:

`[(-1, 2),(-3, 4)]`


Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3),(5,7)]`


Find the inverse of the following matrix (if they exist):

`[(2,1),(7,4)]`


Find the inverse of the following matrix (if they exist):

`[(3,-10),(2,-7)]`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(1, -1),(2, 3)]`


Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


Find the adjoint of the matrix A = `[(2,3),(1,4)]`


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.


Solve by matrix inversion method:

3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


Which of the following matrix has no inverse


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.


If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______ 


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.


If A = `[(-i, 0),(0, i)]`, then ATA is equal to


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.


If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×