Advertisements
Advertisements
प्रश्न
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
उत्तर
Given A = `[(1,3,3),(1,4,3),(1,3,4)]`
|A| = `|(1,3,3),(1,4,3),(1,3,4)|`
`= 1|(4,3),(3,4)| - 3|(1,3),(1,4)| + 3|(1,4),(1,3)|`
= 1[16 – 9] – 3[4 – 3] + 3[3 – 4]
= 1(7) – 3(1) + 3(-1)
= 7 – 3 – 3
= 1
Cofactor [Aij] = `[(7,-1,-1),(-|(3,3),(3,4)|,|(1,3),(1,4)|,-|(1,3),(1,3)|),(|(3,3),(4,3)|,-|(1,3),(1,3)|,|(1,3),(1,4)|)]`
`= [(7,-1,-1),(-(12-9),(4-3),0),((9-12),0,(4-3))]`
`= [(7,-1,-1),(-3,1,0),(-3,0,1)]`
adj A = [Aij]T = `[(7,-3,-3),(-1,1,0),(-1,0,1)]`
Now A(adj A) = `[(1,3,3),(1,4,3),(1,3,4)][(7,-3,-3),(-1,1,0),(-1,0,1)]`
`= [(7-3-3,-3+3+0,-3+0+3),(7-4-3,-3+4,-3+0+3),(7-3-4,-3+3+0,-3+0+4)]`
`= [(1,0,0),(0,1,0),(0,0,1)]` ....(1)
|A| I = `1[(1,0,0),(0,1,0),(0,0,1)] = [(1,0,0),(0,1,0),(0,0,1)]` .....(2)
`"A"^-1 = 1/|"A"|` adj A
`= 1/1 [(7,-3,-3),(-1,1,0),(-1,0,1)] = [(7,-3,-3),(-1,1,0),(-1,0,1)]`
From (1) and (2),
A(Adj A) = |A| I
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 1),(7, 4)]`
Solve by matrix inversion method:
3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8
Solve by matrix inversion method:
2x – z = 0; 5x + y = 4; y + 3z = 5
If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2) l_2` where AT is transpose of A.