Advertisements
Advertisements
प्रश्न
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 1),(7, 4)]`
उत्तर
Let A = `[(2, 1),(7, 4)]`
∴ |A| = `|(2, 1),(7, 4)|`
= 8 – 7
= 1 ≠ 0
∴ A–1 exists.
Consider AA–1 = I
∴ `[(2, 1),(7, 4)] "A"^-1 = [(1, 0),(0, 1)]`
Applying R1 → 4R1 – R2, we get
`[(1, 0),(7, 4)] "A"^-1 = [(4, -1),(0, 1)]`
Applying R2 → R2 – 7R1, we get
`[(1, 0),(0, 1)] "A"^-1 = [(4, -1),(-7, 2)]`
Applying R2 → `(1/4)` R2, we get
`[(1, 0),(0, 1)] "A"^-1 = [(4, -1),(-7, 2)]`
∴ A–1 = `[(4, -1),(-7, 2)]`.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`
Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Fill in the blank :
If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
Find the adjoint of matrix A = `[(6, 5),(3, 4)]`
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.
The inverse matrix of `((3,1),(5,2))` is
If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.