हिंदी

Find the inverse [123115247] of the elementary row tranformation. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.

योग

उत्तर

Let A = `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]`

∴ |A| = `|(1, 2, 3 ),(1, 1, 5),(2, 4, 7)|`

= 1(7 – 20) – 2(7 – 10) + 3(4 – 2)

= 1 × (–13) – 2 × (–3) + 3 × 2

= – 13 + 6 + 6

= – 1 ≠ 0

∴ A–1 exists.

Consider AA–1 = I

∴ `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)] "A"^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

Applying R2 → R2 + R1

`[(1, 2, 3),(0, -1, 2),(2, 4, 7)]"A"^-1= [(1, 0, 0),(-1, 1, 0),(0, 0, 1)]`

Applying R3 → R3 – 2R1

`[(1, 2, 3),(0, -1, 2),(0, 0, 1)]"A"^-1= [(1, 0, 0),(-1, 1, 0),(-2, 0, 1)]`

Applying R2 → (– 1) R2, we get

`[(1, 2, 3),(0, 1, -2),(0, 0, 1)]"A"^-1 = [(1, 0, 0),(1, -1, 0),(-2, 0, 1)]`

Applying R2 → R2 + 2R

`[(1, 2, 3),(0, 1, 0),(0, 0, 1)]"A"^-1 = [(1, 0, 0),(-3, -1, 2),(-2, 0, 1)]`

Applying R→ R1 + 3R

`[(1, 2, 0),(0, 1, 0),(0, 0, 1)]"A"^-1 = [(7, 0, -3),(-3, -1, 2),(-2, 0, 1)]`

Applying R→ R1 + R2

`[(1, 0, 0),(0, 1, 0 ),(0, 0, 1)]"A"^-1 = [(13, 2, -7),(-3, -1, 2),(-2, 0, 1)]`

∴ A–1 = `[(13, 2, -7),(-3, -1, 2),(-2, 0, 1)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Exercise 2.5 [पृष्ठ ७२]

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the co-factor of the element of the following matrix:

`[(-1, 2),(-3, 4)]`


Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Choose the correct answer from the given alternatives in the following question:

The inverse of a symmetric matrix is


Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______


State whether the following is True or False :

A = `[(2, 1),(10, 5)]` is invertible matrix.


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


Find the inverse of the following matrix:

`[(3,1),(-1,3)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is


The inverse matrix of `((3,1),(5,2))` is


The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.


If A = `[(x,1),(1,0)]` and A = A , then x = ______.


If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______ 


If A–1  = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×