हिंदी

Find the inverse of [123115247] by the adjoint method. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.

योग

उत्तर

Let A = `[(1,2,3),(1,1,5),(2,4,7)]`

∴ |A| = `|(1,2,3),(1,1,5),(2,4,7)|`

= 1(7 - 20) - 2(7 - 10) + 3(4 - 2)

= - 13 + 6 + 6 = - 1 ≠ 0

∴ A-1 exists.

First we have to find the cofactor matrix

`= ["A"_"ij"]_(3xx3)`, where `"A"_"ij" = (-1)^("i" + "j") "M"_"ij"`

Now `"A"_11 = (-1)^(1+1) "M"_11 = |(1,5),(4,7)| = 7 - 20 = - 13`

`"A"_12 = (-1)^(1+2) "M"_12 = - |(1,5),(2,7)| = - (7 - 10) = 3`

`"A"_13 = (-1)^(1+3) "M"_13 = |(1,1),(2,4)| = 4 - 2 = 2`

`"A"_21 = (-1)^(2+1) "M"_21 = - |(2,3),(4,7)| = - (14 - 12) = - 2`

`"A"_22 = (-1)^(2+2) "M"_22 = |(1,3),(2,7)| = 7 - 6 = 1`

`"A"_23 = (-1)^(2+3) "M"_23 = - |(1,2),(2,4)| = - (4 - 4) = 0`

`"A"_31 = (-1)^(3+1) "M"_31 = |(2,3),(1,5)| = 10 - 3 = 7`

`"A"_32 = (-1)^(3+2) "M"_32 = - |(1,3),(1,5)| = - (5 - 3) = - 2`

`"A"_33 = (-1)^(3+3) "M"_33 = |(1,2),(1,1)| = 1 - 2 = - 1`

∴ the co-factor matrix = 

`[("A"_11,"A"_12,"A"_13),("A"_21,"A"_22,"A"_23),("A"_31,"A"_32,"A"_33)] = [(-13,3,2),(-2,1,0),(7,-2,-1)]`

∴ adj A = `[(-13,-2,7),(3,1,-2),(2,0,-1)]`

∴ A-1 = `1/|"A"|`(adj A)

`= 1/-1[(-13,-2,7),(3,1,-2),(2,0,-1)]`

∴ A-1 = `[(13,2,-7),(-3,-1,2),(-2,0,1)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrics
Miscellaneous exercise 2 (A) | Q 14 | पृष्ठ ५४

संबंधित प्रश्न

Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the adjoint of the following matrix.

`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.


Choose the correct alternative.

If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______


Adjoint of `[(2, -3),(4, -6)]` is _______


Choose the correct alternative.

If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______


State whether the following is True or False :

A = `[(2, 1),(10, 5)]` is invertible matrix.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


If A and B non-singular matrix then, which of the following is incorrect?


If A is an invertible matrix of order 2 then det (A-1) be equal


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.


If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______ 


A–1 exists if |A| = 0.


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.


If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×