Advertisements
Advertisements
प्रश्न
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
विकल्प
1
3
2
4
उत्तर
2
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the adjoint of the following matrix.
`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix.
`[(2,0,-1),(5,1,0),(0,1,3)]`
Find the inverse of the following matrix (if they exist):
`((2,1),(1,-1))`
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
If A is a no singular matrix, then det (A–1) = _______
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
Check whether the following matrices are invertible or not:
`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α
If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A is invertible matrix of order 3 and |A| = 5, then find |adj A|
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.
Weekly expenditure in an office for three weeks is given as follows. Assuming that the salary in all the three weeks of different categories of staff did not vary, calculate the salary for each type of staff, using the matrix inversion method.
Week | Number of employees | Total weekly salary (in ₹) |
||
A | B | C | ||
1st week | 4 | 2 | 3 | 4900 |
2nd week | 3 | 3 | 2 | 4500 |
3rd week | 4 | 3 | 4 | 5800 |
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
If AB = I and B = AT, then _______.
If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.
If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.
If A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I