हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

Solve by matrix inversion method: 2x + 3y – 5 = 0; x – 2y + 1 = 0. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve by matrix inversion method:

2x + 3y – 5 = 0; x – 2y + 1 = 0.

योग

उत्तर

2x + 3y = 5

x – 2y = -1

The given system can be written as

`[(2,3),(1,-2)][(x),(y)] = [(5),(-1)]`

AX = B

where A = `[(2,3),(1,-2)]`, X = `[(x),(y)]` and B = `[(5),(-1)]`

|A| = `|(2,3),(1,-2)|` = - 4 - 3 = - 7 ≠ 0

∴ A-1 Exists.

adj A = `[(-2,-3),(-1,2)]`

`"A"^-1 = 1/|"A"|`(adj A)

= `1/(-7)[(-2,-3),(-1,2)]`

X = A-1B

`[(x),(y)] = -1/7[(-2,-3),(-1,2)][(5),(-1)]`

`=> -1/7[(-10+3),(-5-2)]`

`=> -1/7 [(-7),(-7)]`

`[(x),(y)] = [(1),(1)]`

∴ x = 1, y = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Matrices and Determinants - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 1 Matrices and Determinants
Exercise 1.3 | Q 1. | पृष्ठ १५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×