Advertisements
Advertisements
Question
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
Solution
2x + 3y = 5
x – 2y = -1
The given system can be written as
`[(2,3),(1,-2)][(x),(y)] = [(5),(-1)]`
AX = B
where A = `[(2,3),(1,-2)]`, X = `[(x),(y)]` and B = `[(5),(-1)]`
|A| = `|(2,3),(1,-2)|` = - 4 - 3 = - 7 ≠ 0
∴ A-1 Exists.
adj A = `[(-2,-3),(-1,2)]`
`"A"^-1 = 1/|"A"|`(adj A)
= `1/(-7)[(-2,-3),(-1,2)]`
X = A-1B
`[(x),(y)] = -1/7[(-2,-3),(-1,2)][(5),(-1)]`
`=> -1/7[(-10+3),(-5-2)]`
`=> -1/7 [(-7),(-7)]`
`[(x),(y)] = [(1),(1)]`
∴ x = 1, y = 1
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Fill in the blank :
(AT)T = _______
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
If A2 - A + I = 0, then A-1 = ______.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0