Advertisements
Advertisements
Question
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Solution
A2 = A . A
= `[(1,3), (3, 1)] [(1,3), (3, 1)]`
= `[(10, 6), (6, 10)]`
A2 - 2A = `[(10, 6), (6, 10)] - 2[(1, 3), (3, 1)]`
A2 - 2A = `[(10, 6), (6, 10)] - [(2, 6), (6, 2)]`
A2 - 2A = `[(8, 0), (0, 8)]`
∴ A2 - 2A is a scalar matrix.
APPEARS IN
RELATED QUESTIONS
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix by the adjoint method.
`[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Adjoint of `[(2, -3),(4, -6)]` is _______
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB =
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
State whether the following is True or False :
Singleton matrix is only row matrix.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.
The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.