Advertisements
Advertisements
Question
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
Options
1
3
2
4
Solution
2
RELATED QUESTIONS
Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`
The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
If A is a no singular matrix, then det (A–1) = _______
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
Check whether the following matrices are invertible or not:
`[(1, 0),(0, 1)]`
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
Solve by matrix inversion method:
2x – z = 0; 5x + y = 4; y + 3z = 5
The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.
If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:
If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.
If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.
The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.
The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0
Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.