English

A = [cosθ-sinθ-sinθ-cosθ] then find A−1 - Mathematics and Statistics

Advertisements
Advertisements

Question

A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 

Sum

Solution

|A| = `|(cos theta, - sin theta),(-sin theta, - cos theta)|`

= – cos2θ – sin2θ

= –1 ≠ 0

∴ A–1 exists.

A11 = (–1)1+1 M11 = M11 = – cos θ

A12 = (–1)1+2 M12 = – M12 = sin θ

A21 = (–1)2+1 M21 = – M21 = sin θ

A22 = (–1)2+2 M22 = M22 = cos θ

∴ adj (A) = `[(- cos theta, sin theta),(sin theta, cos theta)]^"T"`

= `[(- cos theta, sin theta),(sin theta, cos theta)]`

A−1 = `1/|"A"|` adj (A)

= `[(cos theta, -sin theta),(-sin theta, -cos theta)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.2: Matrics - Very Short Answer

RELATED QUESTIONS

Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of the following matrix (if they exist):

`[(2,1),(7,4)]`


Find the inverse of the following matrix (if they exist):

`[(3,-10),(2,-7)]`


Find the inverse of the following matrix (if they exist):

`[(2,0,-1),(5,1,0),(0,1,3)]`


Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


State whether the following is True or False :

Singleton matrix is only row matrix.


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 1),(7, 4)]`


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


If A = `[(a,b),(c,d)]` such that ad - bc ≠ 0 then A-1 is


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______ 


If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.


The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.


Choose the correct option:

If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`


If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×