English

Fill in the blank : If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is [........................]=[xy]=[............] - Mathematics and Statistics

Advertisements
Advertisements

Question

Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`

Fill in the Blanks

Solution

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[("a"_1,"b"_1),("a"_2, "b"_2)] = [(x),(y)] = [("c"_1),("c"_2)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Miscellaneous Exercise 2 [Page 83]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.


Choose the correct alternative.

If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______


If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______


For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`  then, show that the inverse of A is A itself.


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


Solve by matrix inversion method:

3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8


If A and B non-singular matrix then, which of the following is incorrect?


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______ 


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.


If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.


Find the cofactors of the elements of the matrix

`[(-1, 2),(-3, 4)]`


A–1 exists if |A| = 0.


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×