Advertisements
Advertisements
Question
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
Solution
Given A = `[(2,-2,2),(2,3,0),(9,1,5)]`
[Aij] = `|(|(3,0),(1,5)|,-|(2,0),(9,5)|,|(2,3),(9,1)|),(-|(-2,2),(1,5)|,|(2,2),(9,5)|,-|(2,-2),(9,1)|),(|(-2,2),(3,0)|,-|(2,2),(2,0)|,|(2,-2),(2,3)|)|`
`= [(15-0,-(10-0),(2-27)),(-(-10-2),(10-18),-(2+18)),(0-6, -(0-4),(6+4))]`
`= [(15,-10,-25),(12,-8,-20),(-6,4,10)]`
adj A = [Aij]T = `[(15,12,-6),(-10,-8,4),(-25,-20,10)]`
Now (adj A) A = `[(15,12,-6),(-10,-8,4),(-25,-20,10)] [(2,-2,2),(2,3,0),(9,1,5)]`
`= [(30+24-54, -30+36-6, 30+0-30),(-20-16+36, 20-24+4, -20+0+20),(-50-40+90,50-60+10,-50+0+50)]`
`= [(0,0,0),(0,0,0),(0,0,0)]` = O
APPEARS IN
RELATED QUESTIONS
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`