English

If A = [0431-3-3-144], then find A2 and hence find A−1 - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 

Sum

Solution

|A| = `0 - 4|(1, -3),(-1, 4)| + 3|(1, -3),(-1, 4)|`

= – 4(4 – 3) + 3(4 – 3)

= –1 ≠ 0

∴ A−1 exist

A2 = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)] [(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`

= `[(0 + 4 - 3, 0 - 12 + 12, 0 - 12 + 12),(0 - 3 + 3, 4 + 9 - 12, 3 + 9 - 12),(0 + 4 - 4, -4 - 12 + 16, -3 - 12 + 16)]`

= `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

i.e., A × A = I

∴ A–1 × A × A = A–1 × I

∴ A = A–1 

∴ A–1 = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.2: Matrics - Short Answers II

RELATED QUESTIONS

The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3),(5,7)]`


Find the inverse of the following matrix (if they exist):

`[(3,-10),(2,-7)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Choose the correct alternative.

If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______


If A is a no singular matrix, then det (A–1) = _______


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`


If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1 


Choose the correct alternative:

If A is a non singular matrix of order 3, then |adj (A)| =  ______


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]`  then, find p, q if Y = X-1


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.


If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×