Advertisements
Advertisements
Question
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
Solution
The given equations can be written in matrix form as
`[(1,-1,1),(2,-1,0),(0,2,-1)] [(x),(y),(z)] = [(2),(0),(1)] => "AX" = "B"`
Where A = `[(1,-1,1),(2,-1,0),(0,2,-1)]`, X = `[(x),(y),(z)]`, B = `[(2),(0),(1)]`
|A| = `[(1,-1,1),(2,-1,0),(0,2,-1)]`
`= 1|(-1,0),(2,-1)| + 1|(2,0),(0,-1)| + 1|(2,-1),(0,2)|`
= 1(1 - 0) + 1(- 2 - 0) + 1(4 - 0)
= 1 - 2 + 4 = 3 ≠ 0
∴ A-1 exists.
adj A = `[(+|(-1,0),(2,-1)|, -|(2,0),(0,-1)|, +|(2,-1),(0,2)|),(-|(-1,1),(2,-1)|, +|(1,1),(0,-1)|, -|(1,-1),(0,2)|),(+|(-1,1),(-1,0)|, -|(1,1),(2,0)|, +|(1,-1),(2,-1)|)]^"T"`
`= [((1 - 0),-(-2-0),+(4-0)),(-(1-2),+(-1-0),-(2-0)),(+(0+1),-(0-2),+(-1+2))]^"T"`
`= [(1,2,4),(1,-1,-2),(1,2,1)]^"T" = [(1,1,1),(2,-1,2),(4,-2,1)]`
∴ A-1 = `1/|"A"|`adj A
`= 1/3 [(1,1,1),(2,-1,2),(4,-2,1)]`
Now X = `"A"^-1"B"`
`[(x),(y),(z)] = 1/3[(1,1,1),(2,-1,2),(4,-2,1)] [(2),(0),(1)]`
`[(x),(y),(z)] = 1/3[(2+0+1),(4+0+2),(8+0+1)]`
`[(x),(y),(z)] = 1/3[(3),(6),(9)]`
`[(x),(y),(z)] = [(1),(2),(3)]`
∴ x = 1, y = 2, z = 3
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
If A is a no singular matrix, then det (A–1) = _______
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.