हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

Solve by using matrix inversion method: x - y + z = 2, 2x - y = 0, 2y - z = 1 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1

योग

उत्तर

The given equations can be written in matrix form as

`[(1,-1,1),(2,-1,0),(0,2,-1)] [(x),(y),(z)] = [(2),(0),(1)] => "AX" = "B"`

Where A = `[(1,-1,1),(2,-1,0),(0,2,-1)]`, X = `[(x),(y),(z)]`, B = `[(2),(0),(1)]`

|A| = `[(1,-1,1),(2,-1,0),(0,2,-1)]`

`= 1|(-1,0),(2,-1)| + 1|(2,0),(0,-1)| + 1|(2,-1),(0,2)|`

= 1(1 - 0) + 1(- 2 - 0) + 1(4 - 0)

= 1 - 2 + 4 = 3 ≠ 0

∴ A-1 exists.

adj A = `[(+|(-1,0),(2,-1)|, -|(2,0),(0,-1)|, +|(2,-1),(0,2)|),(-|(-1,1),(2,-1)|, +|(1,1),(0,-1)|, -|(1,-1),(0,2)|),(+|(-1,1),(-1,0)|, -|(1,1),(2,0)|, +|(1,-1),(2,-1)|)]^"T"`

`= [((1 - 0),-(-2-0),+(4-0)),(-(1-2),+(-1-0),-(2-0)),(+(0+1),-(0-2),+(-1+2))]^"T"`

`= [(1,2,4),(1,-1,-2),(1,2,1)]^"T" = [(1,1,1),(2,-1,2),(4,-2,1)]`

∴ A-1 = `1/|"A"|`adj A

`= 1/3 [(1,1,1),(2,-1,2),(4,-2,1)]`

Now X = `"A"^-1"B"`

`[(x),(y),(z)] = 1/3[(1,1,1),(2,-1,2),(4,-2,1)] [(2),(0),(1)]`

`[(x),(y),(z)] = 1/3[(2+0+1),(4+0+2),(8+0+1)]`

`[(x),(y),(z)] = 1/3[(3),(6),(9)]`

`[(x),(y),(z)] = [(1),(2),(3)]`

∴ x = 1, y = 2, z = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Matrices and Determinants - Miscellaneous Problems [पृष्ठ २२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 1 Matrices and Determinants
Miscellaneous Problems | Q 8 | पृष्ठ २२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×