Advertisements
Advertisements
प्रश्न
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
उत्तर
The given equations can be written in matrix form as
`[(1,-1,1),(2,-1,0),(0,2,-1)] [(x),(y),(z)] = [(2),(0),(1)] => "AX" = "B"`
Where A = `[(1,-1,1),(2,-1,0),(0,2,-1)]`, X = `[(x),(y),(z)]`, B = `[(2),(0),(1)]`
|A| = `[(1,-1,1),(2,-1,0),(0,2,-1)]`
`= 1|(-1,0),(2,-1)| + 1|(2,0),(0,-1)| + 1|(2,-1),(0,2)|`
= 1(1 - 0) + 1(- 2 - 0) + 1(4 - 0)
= 1 - 2 + 4 = 3 ≠ 0
∴ A-1 exists.
adj A = `[(+|(-1,0),(2,-1)|, -|(2,0),(0,-1)|, +|(2,-1),(0,2)|),(-|(-1,1),(2,-1)|, +|(1,1),(0,-1)|, -|(1,-1),(0,2)|),(+|(-1,1),(-1,0)|, -|(1,1),(2,0)|, +|(1,-1),(2,-1)|)]^"T"`
`= [((1 - 0),-(-2-0),+(4-0)),(-(1-2),+(-1-0),-(2-0)),(+(0+1),-(0-2),+(-1+2))]^"T"`
`= [(1,2,4),(1,-1,-2),(1,2,1)]^"T" = [(1,1,1),(2,-1,2),(4,-2,1)]`
∴ A-1 = `1/|"A"|`adj A
`= 1/3 [(1,1,1),(2,-1,2),(4,-2,1)]`
Now X = `"A"^-1"B"`
`[(x),(y),(z)] = 1/3[(1,1,1),(2,-1,2),(4,-2,1)] [(2),(0),(1)]`
`[(x),(y),(z)] = 1/3[(2+0+1),(4+0+2),(8+0+1)]`
`[(x),(y),(z)] = 1/3[(3),(6),(9)]`
`[(x),(y),(z)] = [(1),(2),(3)]`
∴ x = 1, y = 2, z = 3
APPEARS IN
संबंधित प्रश्न
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix (if they exist):
`[(3,-10),(2,-7)]`
Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.