Advertisements
Advertisements
प्रश्न
If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______
विकल्प
0, −3, 3
1, −2, 3
5, 2, 2
11, 8, 3
उत्तर
1, −2, 3
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix.
`[(1,2),(2,-1)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of the following matrix (if they exist):
`((2,1),(1,-1))`
Find the inverse of the following matrix (if they exist):
`((1,3),(2,7))`
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.
Choose the correct answer from the given alternatives in the following question:
If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Adjoint of `[(2, -3),(4, -6)]` is _______
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
Check whether the following matrices are invertible or not:
`[(1, 0),(0, 1)]`
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
Solve by matrix inversion method:
2x – z = 0; 5x + y = 4; y + 3z = 5
Weekly expenditure in an office for three weeks is given as follows. Assuming that the salary in all the three weeks of different categories of staff did not vary, calculate the salary for each type of staff, using the matrix inversion method.
Week | Number of employees | Total weekly salary (in ₹) |
||
A | B | C | ||
1st week | 4 | 2 | 3 | 4900 |
2nd week | 3 | 3 | 2 | 4500 |
3rd week | 4 | 3 | 4 | 5800 |
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If A = `[(-i, 0),(0, i)]`, then ATA is equal to
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
Find the cofactors of the elements of the matrix
`[(-1, 2),(-3, 4)]`
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.