Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
उत्तर
Let A = `[(2,−3,3),(2,2,3),(3,−2,2)]`
∴ |A| = `|(2,-3,3),(2,2,3),(3,−2,2)|`
= 2(4 + 6) + 3(4 − 9) + 3(− 4 − 6)
= 20 − 15 − 30
= − 25 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
∴ `[(2,-3,3),(2,2,3),(3,-2,2)] "A"^-1 = [(1,0,0),(0,1,0),(0,0,1)]`
By R1↔R3, we get,
`[(3,-2,2),(2,2,3),(2,-3,3)] "A"^-1 = [(0,0,1),(0,1,0),(1,0,0)]`
By R1 → R1 − R2, we get
`[(1,-4,-1),(2,2,3),(2,-3,3)] "A"^-1 = [(0,-1,1),(0,1,0),(1,0,0)]`
By R2 → R2 − 2R1 and R3 → R3 − 2R1, we get,
`[(1,-4,-1),(0,10,5),(0,5,5)] "A"^-1 = [(0,-1,1),(0,3,-2),(1,2,-2)]`
By R2 → `(1/10) "R"_2`, we get,
`[(1,-4,-1),(0,1,1/2),(0,5,5)] "A"^-1 = [(0,-1,1),(0,3/10,-1/5),(1,2,-2)]`
By R1 → R1 + 4R2 and R3 → R3 - 5R2, we get,
`[(1,0,1),(0,1,1/2),(0,0,5/2)] "A"^-1 = [(0,1/5,1/5),(0,3/10,-1/5),(1,1/2,-1)]`
By R3 → `(2/5)"R"_3`, we get,
`[(1,0,1),(0,1,1/2),(0,0,1)] "A"^-1 = [(0,1/5,1/5),(0,3/10,-1/5),(2/5,1/5,-2/5)]`
By R1 →R1 − R3 and R2 → `"R"_2 - 1/2"R"_3`, we get,
`[(1,0,0),(0,1,0),(0,0,1)] "A"^-1 = [(-2/5,0,3/5),(-1/5,1/5,0),(2/5,1/5,-2/5)]`
∴ `"A"^-1 = [(-2/5,0,3/5),(-1/5,1/5,0),(2/5,1/5,-2/5)]`
Notes
Answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Choose the correct answer from the given alternatives in the following question:
For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals
Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.
Find the inverse of A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.
If A is a no singular matrix, then det (A–1) = _______
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
Find the adjoint of matrix A = `[(6, 5),(3, 4)]`
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.
If A is an invertible matrix of order 2 then det (A-1) be equal
If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.
If A = `[(1,2),(3,-5)]`, then A-1 = ?
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______
If A2 - A + I = 0, then A-1 = ______.
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0