हिंदी

Find inverse of the following matrices (if they exist) by elementary transformations : [20-1510013] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`

योग

उत्तर

Let A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`

∴ |A| = `|(2, 0, -1),(5, 1, 0),(0, 1, 3)|`

= 2(3 – 0) –0 –1(5 – 0)
= 6 – 0 – 5
= 1 ≠ 0
∴ A–1 existts.
Consider AA–1 = I

∴ `[(2, 0, 1),(5, 1, 0),(0, 1, 3)] "A"^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

Applying R1 ↔ R2, we get

`[(5, 1, 0),(2, 0, -1),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(1, 0, 0),(0, 0, 1)]`

Applying R1 → R1 – 2R2, we get

`[(1, 1, 2),(2, 0, -1),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(1, 0, 0),(0, 0, 1)]`

Applying R2 → R2 – 3R3, we get

`[(1, 1, 2),(0, 1, 4),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(5, -2, 3),(0, 0, 1)]`

Applying R1 → R1 – R2 and R3 → R3 – R2 , we get

`[(1, 0, -2),(0, 1, 4),(0, 0, -1)] "A"^-1 = [(-7, 3, -3),(5, -2, 3),(-5, 2, -2)]`

Applying R3 → (– 1) R3, we get

`[(1, 0, -2),(0, 1, 4),(0, 0, 1)] "A"^-1 = [(-7, 3, -3),(5, -2, 3),(5, -2, 2)]`

Applying R1 → R1 + 2R3 and R2 → R2 – 4R3 , we get

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] "A"^-1 = [(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`

∴ A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Miscellaneous Exercise 2 [पृष्ठ ८५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrices
Miscellaneous Exercise 2 | Q 4.16 | पृष्ठ ८५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is


Choose the correct answer from the given alternatives in the following question:

The inverse of a symmetric matrix is


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.


Choose the correct alternative.

If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______


Adjoint of `[(2, -3),(4, -6)]` is _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______


State whether the following is True or False :

A = `[(2, 1),(10, 5)]` is invertible matrix.


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


Find the inverse of the following matrix:

`[(1,-1),(2,3)]`


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is


If A and B non-singular matrix then, which of the following is incorrect?


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


Find the cofactors of the elements of the matrix

`[(-1, 2),(-3, 4)]`


If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.


A–1 exists if |A| = 0.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×