Advertisements
Advertisements
प्रश्न
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
उत्तर
Let A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
∴ |A| = `|(2, 0, -1),(5, 1, 0),(0, 1, 3)|`
= 2(3 – 0) –0 –1(5 – 0)
= 6 – 0 – 5
= 1 ≠ 0
∴ A–1 existts.
Consider AA–1 = I
∴ `[(2, 0, 1),(5, 1, 0),(0, 1, 3)] "A"^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Applying R1 ↔ R2, we get
`[(5, 1, 0),(2, 0, -1),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(1, 0, 0),(0, 0, 1)]`
Applying R1 → R1 – 2R2, we get
`[(1, 1, 2),(2, 0, -1),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(1, 0, 0),(0, 0, 1)]`
Applying R2 → R2 – 3R3, we get
`[(1, 1, 2),(0, 1, 4),(0, 1, 3)] "A"^-1 = [(-2, 1, 0),(5, -2, 3),(0, 0, 1)]`
Applying R1 → R1 – R2 and R3 → R3 – R2 , we get
`[(1, 0, -2),(0, 1, 4),(0, 0, -1)] "A"^-1 = [(-7, 3, -3),(5, -2, 3),(-5, 2, -2)]`
Applying R3 → (– 1) R3, we get
`[(1, 0, -2),(0, 1, 4),(0, 0, 1)] "A"^-1 = [(-7, 3, -3),(5, -2, 3),(5, -2, 2)]`
Applying R1 → R1 + 2R3 and R2 → R2 – 4R3 , we get
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] "A"^-1 = [(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`
∴ A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Choose the correct answer from the given alternatives in the following question:
If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.
Find the inverse of A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
Adjoint of `[(2, -3),(4, -6)]` is _______
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB =
Fill in the blank :
If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
If A and B non-singular matrix then, which of the following is incorrect?
If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
Find the cofactors of the elements of the matrix
`[(-1, 2),(-3, 4)]`
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
A–1 exists if |A| = 0.
The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.