Advertisements
Advertisements
प्रश्न
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
उत्तर १
A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` and B = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`
XA = B
Post multiplying by A–1, we get
XAA–1 = BA–1
∴ X = BA–1 ...(i)
|A| = `|(1, 0, 1),(0, 2, 3),(1, 2, 1)|`
= 1(2 – 6) – 0 + 1(0 – 2)
= – 4 – 2
= – 6 ≠ 0
∴ A–1 exists.
A11 = (– 1)1+1 M11 = `1 |(2, 3),(2, 1)|` = 1(2 – 6) = – 4
A12 = (– 1)1+2 M12 = `-1 |(0, 3),(1, 1)|` = –1(0 – 3) = 3
A13 = (– 1)1+3 M13 = `1 |(0, 2),(1, 2)|` = 1(0 – 2) = – 2
A21 = (– 1)2+1 M21 = `-1 |(0, 1),(2, 1)|` = –1(0 – 2) = 2
A22 = (– 1)2+2 M22 = `1 |(1, 1),(1, 1)|` = 1(1 – 1) = 0
A23 = (– 1)2+3 M23 = `-1 |(1, 0),(1, 2)|` = –1(2 – 0) = – 2
A31 = (– 1)3+1 M31 = `1 |(0, 1),(2, 3)|` = 1(0 – 2) = – 2
A32 = (– 1)3+2 M32 = `-1 |(1, 1),(0, 3)|` = –1(3 – 0) = – 3
A33 = (– 1)3+3 M33 = `1 |(1, 0),(0, 2)|` = 1(2 – 0) = 2
∴ The matrix of the co-factors is
[Aij]3×3 = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]`
= `[(-4, 3, -2),(2, 0, -2),(-2, -3, 2)]`
Now, adj A = `["A"_"ij"]_(3 xx 3)^"T"`
= `[(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]`
∴ A–1 = `1/|"A"| ("adj A")`
= `-1/6[(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]`
X = BA–1 ...[From (i)]
∴ X = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)] {(1/6) [(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]}`
= `(1)/(6) [(1, 2, 3),(1, 1, 5),(2, 4, 7)] [(4, -2, 2),(-3, 0, 3),(2, 2, -2)]`
= `(1)/(6) [(4 - 6 + 6, -2 + 0 + 6, 2 + 6 - 6),(4 - 3 + 10, -2 + 0 + 10, 2 + 3 - 10),(8 - 12 + 14, -4 + 0 + 14, 4 + 12 - 14)]`
∴ X = `(1)/(6)[(4, 4, 2),(11, 8, -5),(10, 10, 2)]`
उत्तर २
Consider XA = B
∴ `X[(1, 0, 1),(0, 2, 3),(1, 2, 1)] = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`
By C3 – C1, we get
`[(1, 0, 0),(0, 2, 3),(1, 2, 0)] = [(1, 2, 2),(1, 1, 4),(2, 4, 5)]`
By `(1/2)C_2`, we get
`[(1, 0, 0),(0, 1, 3),(1, 1, 0)] = [(1, 1, 2),(1, 1/2, 4),(2, 2, 5)]`
By C3 – 3C2, we get
`[(1, 0, 0),(0, 1, 0),(1, 1, -3)] = [(1, 1, -1),(1, 1/2, 5/2),(2, 2, -1)]`
By `(-1/3)C_3`, we get
`[(1, 0, 0),(0, 1, 0),(1, 1, 1)] = [(1, 1, 1/3),(1, 1/2, -5/6),(2, 2, 1/3)]`
By C1 – C3 and C2 – C3, we get
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] = [(2/3, 2/3, 1/3),(11/6, 4/3, -5/6),(5/3, 5/3, 1/3)]`
∴ X = `1/6[(4, 4, 2),(11, 8, -5),(10, 10, 2)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the adjoint of the following matrix.
`[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverse of the following matrix.
`[(2,0,-1),(5,1,0),(0,1,3)]`
Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.
Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.
Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`
Find the inverse of the following matrices by transformation method:
`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
State whether the following is True or False :
Singleton matrix is only row matrix.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______
If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'
Find the adjoint of matrix A = `[(6, 5),(3, 4)]`
If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
The value of Minor of element b22 in matrix B = `[(2, -2),(4, 5)]` is ______
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
Which of the following matrix has no inverse
If A = `((-1,2),(1,-4))` then A(adj A) is
If A is an invertible matrix of order 2 then det (A-1) be equal
The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.
If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
A–1 exists if |A| = 0.
If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.