Advertisements
Advertisements
प्रश्न
The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is
विकल्प
`7/30 ((1/2,5/12),(2/5,4/5))`
`7/30 ((1/2,(-5)/12),((-2)/5,1/5))`
`30/7 ((1/2,5/12),(2/5,4/5))`
`30/7 ((1/2,(-5)/12),((-2)/5,4/5))`
उत्तर
`30/7 ((1/2,5/12),(2/5,4/5))`
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the matrix of the co-factor for the following matrix.
`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`
Find the inverse of the following matrix.
`[(1,2),(2,-1)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
State whether the following is True or False :
Singleton matrix is only row matrix.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.