हिंदी

Find the Inverse of Matrix a by Using Adjoint Method; Where a = (1, 0, 1), (0, 2, 3), (1, 2, 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`

योग

उत्तर १

where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`

|A| = I(2 -6) - 0(0 -3) + 1(0 - 2)

|A| = -4 -2

|A| = -6 ≠ 0

`therefore A^-1` exists.

Minors Co-factors
M11 = -4 A11 = -4
M12 = -3 A12 = 3
M13 = -2 A13 = -2
M21 = -2 A21 = 2
M22 = 0 A22 = 0
M23 = 2 A23 = -2
M31 = -2 A31 = -2
M32 = 3 A32 = -3
M33 = 2 A33 = 2

adj (A) = `[(-4, 2, -2), (3, 0, -3), (-2, -2, 2)]`

A-1 = `1/|A|.` adj(A)

A-0 = `(-1)/6 [(-4, 2, -2), (3, 0, -3), (-2, -2, 2)]`

shaalaa.com

उत्तर २

where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`

|A| = I(2 -6) - 0(0 -3) + 1(0 - 2)

|A| = -4 -2

|A| = -6 ≠ 0

`therefore A^-1` exists.

First we have to find the cofactor matrix

`= ["A"_"ij"]_(3xx3), "where"  "A"_"ij" = (- 1)^("i" + "j") "M"_"ij"`

Now `"A"_11 = (-1)^(1 + 1)  "M"_11 = |(2,3),(2,1)| = 2 - 6 = - 4`

`"A"_12 = (-1)^(1 + 2)  "M"_12 = |(0,3),(1,1)| = 0 - 3 = 3`

`"A"_13 = (-1)^(1 + 3)  "M"_13 =  |(0,2),(1,2)| = 0 - 2 = - 2`

`"A"_21 = (-1)^(2 + 1)  "M"_21 = |(0,1),(2,1)| = - 0 - 2 = 2`

`"A"_22 = (-1)^(2 + 2)  "M"_22 = |(1,1),(1,1)| = 1 - 1 = 0`

`"A"_23 = (-1)^(2 + 3)  "M"_23 = |(1,0),(1,2)| = - 2 - 0 = - 2`

`"A"_31 = (-1)^(3 + 1)  "M"_31 = |(0,1),(2,1)| = 0 - 2 = - 2`

`"A"_32 = (-1)^(3 + 2)  "M"_32 = |(1,1),(0,3)| = - 3 - 0 = - 3`

`"A"_33 = (-1)^(3 + 3)  "M"_33 = |(1,0),(0,2)| = 2 - 0 = 2`

Matrix of co. factor is = `[(-4,  3, -2), (2, 0, -2), (-2, -3, 2)]`

adj (A) = `[(-4, 2, -2), (3, 0, -3), (-2, -2, 2)]`

A-1 = `1/|A|.` adj(A)

A-0 = `(1)/6 [(-4, 2, -2), (3, 0, -3), (-2, -2, 2)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrics
Miscellaneous exercise 2 (A) | Q 15 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.


Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the inverse of the following matrix by the adjoint method.

`[(-1,5),(-3,2)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Find the inverse of the following matrix (if they exist):

`[(3,-10),(2,-7)]`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Choose the correct answer from the given alternatives in the following question:

The inverse of a symmetric matrix is


Choose the correct answer from the given alternatives in the following question:

For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Adjoint of `[(2, -3),(4, -6)]` is _______


Choose the correct alternative.

If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


If A is a no singular matrix, then det (A–1) = _______


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

If A = [aij]2x3 and B = [bij]mx1 and AB is defined, then m = _______


Fill in the blank :

If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


Check whether the following matrices are invertible or not:

`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 1),(7, 4)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


If A is invertible matrix of order 3 and |A| = 5, then find |adj A|


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


Find m if the matrix `[(1,1,3),(2,λ,4),(9,7,11)]` has no inverse.


If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]`  then, find p, q if Y = X-1


Solve by matrix inversion method:

2x + 3y – 5 = 0; x – 2y + 1 = 0.


The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is


The inverse matrix of `((3,1),(5,2))` is


If A = `((-1,2),(1,-4))` then A(adj A) is


If A and B non-singular matrix then, which of the following is incorrect?


If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.


If A = `[(1,2),(3,-5)]`, then A-1 = ?


If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.


If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If AB = I and B = AT, then _______.


If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______ 


If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.


If A–1  = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.


If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.


Find the cofactors of the elements of the matrix

`[(-1, 2),(-3, 4)]`


A–1 exists if |A| = 0.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×