हिंदी

If A is invertible matrix of order 3 and |A| = 5, then find |adj A| - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A is invertible matrix of order 3 and |A| = 5, then find |adj A|

योग

उत्तर

We know that A−1 = `1/|"A"|` adj (A)

∴ A−1 |A| = adj (A)

∴ AA−1 |A| = A adj (A)

∴ I |A| = A adj (A)

∴ det (I |A|) = det (A adj (A))

∴ det (I|A|) = det (A) (adj (A))

∴ `|(5, 0, 0),(0, 5, 0),(0, 0, 5)|` = 5 |adj A|

∴ 53 = 5 |adj A|

∴ |adj A| = 52 = 25

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.2: Matrics - Short Answers I

संबंधित प्रश्न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

(AT)T = _______


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


Find the inverse of the following matrix:

`[(3,1),(-1,3)]`


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


adj (AB) is equal to:


The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is


Which of the following matrix has no inverse


If A = `((-1,2),(1,-4))` then A(adj A) is


If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.


Solve by using matrix inversion method:

x - y + z = 2, 2x - y = 0, 2y - z = 1


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______ 


If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.


If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×