हिंदी

If A = [12-3-1],B=[-1015], then AB = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 

विकल्प

  • `[(1, -10),(1, 20)]`

  • `[(1, 10),(-1, 20)]`

  • `[(1, 10),(2,- 5)]`

  • `[(1, 10),(-1, -20)]`

MCQ

उत्तर

If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = `[(1, 10),(2,- 5)]`.

shaalaa.com

Notes

Option (C) has been modified.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Miscellaneous Exercise 2 [पृष्ठ ८२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Matrices
Miscellaneous Exercise 2 | Q 1.14 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.


Find the inverse of the following matrix (if they exist):

`((1,-1),(2,3))`


Find the inverse of the following matrix (if they exist):

`[(2,-3),(5,7)]`


Find the inverse of the following matrix (if they exist):

`[(2,0,-1),(5,1,0),(0,1,3)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.


If A is a no singular matrix, then det (A–1) = _______


State whether the following is True or False :

If A and B are conformable for the product AB, then (AB)T = ATBT.


Solve the following :

If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.


If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`


State whether the following statement is True or False:

Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`


Find the inverse of the following matrix:

`[(1,-1),(2,3)]`


Find the inverse of the following matrix:

`[(3,1),(-1,3)]`


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


If A = `((-1,2),(1,-4))` then A(adj A) is


If A = `[(1,2),(3,-5)]`, then A-1 = ?


The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______ 


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.


If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.


If A = `[(-i, 0),(0, i)]`, then ATA is equal to


Choose the correct option:

If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`


For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×