हिंदी

Find the co-factor of the element of the following matrix. [1-12-235-20-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`

योग

उत्तर

Let A = `[(1,-1,2),(-2,3,5),(-2,0,-1)]`

The co-factor of aij is given by Aij = (−1)i+j Mij

Now, M11 = `|(3,5),(0,-1)|` = − 3 − 0 = − 3

∴ A11 = (− 1)1+1(− 3) = − 3

M12 = `|(-2,5),(-2,-1)|` = 2 + 10 = 12

∴ A12 = (− 1)1+2(12) = − 12

M13 = `|(-2,3),(-2,0)|` = 0 + 6 = 6

∴ A13 = (− 1)1+3(6) = 6

M21 = `|(-1,2),(0,-1)|` = 1 − 0 = 1

∴ A21 = (− 1)2+1(1) = − 1

M22 = `|(1,2),(-2,-1)|` = − 1 + 4 = 3

∴ A22 = (− 1)2+2(3) = 3

M23 = `|(1,-1),(-2,0)|` = 0 − 2 = − 2

∴ A23 = (−1)2+3(− 2) = 2

M31 = `|(-1,2),(3,5)|` = − 5 − 6 = − 11

∴ A31 = (− 1)3+1(− 11) = − 11

M32 = `|(1,2),(-2,5)|` = 5 + 4 = 9

∴ A32 = (− 1)3+2(9) = − 9

M33 = `|(1,-1),(-2,3)|` = 3 − 2 = 1

∴ A33 = (− 1)3+3(1) = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrics - Exercise 2.2 [पृष्ठ ५१]

APPEARS IN

संबंधित प्रश्न

If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Choose the correct answer from the given alternatives in the following question:

If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by transformation method: `[(1, 2),(2, -1)]`


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


Choose the correct alternative.

If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______


Fill in the blank :

(AT)T = _______


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


If A = `[(1,2),(3,-5)]`, then A-1 = ?


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


If A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)]` then (A2 – 5A)A–1 = ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.


If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×