Advertisements
Advertisements
Question
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Solution
Let A = `[(1,-1,2),(-2,3,5),(-2,0,-1)]`
The co-factor of aij is given by Aij = (−1)i+j Mij
Now, M11 = `|(3,5),(0,-1)|` = − 3 − 0 = − 3
∴ A11 = (− 1)1+1(− 3) = − 3
M12 = `|(-2,5),(-2,-1)|` = 2 + 10 = 12
∴ A12 = (− 1)1+2(12) = − 12
M13 = `|(-2,3),(-2,0)|` = 0 + 6 = 6
∴ A13 = (− 1)1+3(6) = 6
M21 = `|(-1,2),(0,-1)|` = 1 − 0 = 1
∴ A21 = (− 1)2+1(1) = − 1
M22 = `|(1,2),(-2,-1)|` = − 1 + 4 = 3
∴ A22 = (− 1)2+2(3) = 3
M23 = `|(1,-1),(-2,0)|` = 0 − 2 = − 2
∴ A23 = (−1)2+3(− 2) = 2
M31 = `|(-1,2),(3,5)|` = − 5 − 6 = − 11
∴ A31 = (− 1)3+1(− 11) = − 11
M32 = `|(1,2),(-2,5)|` = 5 + 4 = 9
∴ A32 = (− 1)3+2(9) = − 9
M33 = `|(1,-1),(-2,3)|` = 3 − 2 = 1
∴ A33 = (− 1)3+3(1) = 1
APPEARS IN
RELATED QUESTIONS
The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the inverse of the following matrix by the adjoint method.
`[(2,-2),(4,3)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is
Choose the correct answer from the given alternatives in the following question:
The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is
Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.
Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
Check whether the following matrices are invertible or not:
`[(1, 1),(1, 1)]`
Check whether the following matrices are invertible or not:
`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
State whether the following statement is True or False:
Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
If X = `[(8,-1,-3),(-5,1,2),(10,-1,-4)]` and Y = `[(2,1,-1),(0,2,1),(5,p,q)]` then, find p, q if Y = X-1
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
If A = `[(-i, 0),(0, i)]`, then ATA is equal to
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`