English

Find the inverse of the following matrices by the adjoint method [3-12-1]. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.

Sum

Solution

Let A = `[(3, -1),(2, -1)]`

∴ |A| = `|(3, - 1),(2, -1)|` = – 3 + 2 = – 1 ≠ 0

∴ A–1 exists.
A11 = (– 1)1+1 M11 = (1)(–1) = – 1
A12 = (– 1)1+2 M12 = (– 1)(2) = – 2
A21 = (– 1)2+1 M21 = (– 1)(– 1) = 1
A22 = (– 1)2+2 M22 = (1)(3) = 3
∴  The matrix of the co-factors is

[Aij]2x2 = `[("A"_11, "A"_12),("A"_21, "A"_22)] = [(-1, -2),(1, 3)]`

Now adj A = `["A"_"ij"]_(2xx2)^"T" = [(-1, 1),(-2, 3)]`

∴ A–1 = `(1)/|"A"|("adj A")`

= `(1)/(-1)[(-1, 1),(-2, 3)]`

= `[(1, -1),(2, -3)]`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.5 [Page 72]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the co-factor of the element of the following matrix.

`[(1,-1,2),(-2,3,5),(-2,0,-1)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3),(5,7)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3,3),(2,2,3),(3,-2,2)]`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is


Choose the correct answer from the given alternatives in the following question:

The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is


Choose the correct answer from the given alternatives in the following question:

If A−1 = `- 1/2[(1,-4),(-1,2)]`, then A = ______.


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.


Check whether the following matrices are invertible or not:

`[(1, 1),(1, 1)]`


If A = `[(4, -1),(-1, "k")]` such that A2 − 6A + 7I = 0, then K = ______


If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α


If A = `[("a", "b"),("c", "d")]` then find the value of |A|−1 


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)


A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.

Months Sales in units Commission
A B C
January 9 10 2 800
February 15 5 4 900
March 6 10 3 850

Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.


Weekly expenditure in an office for three weeks is given as follows. Assuming that the salary in all the three weeks of different categories of staff did not vary, calculate the salary for each type of staff, using the matrix inversion method.

Week Number of employees Total weekly salary
(in ₹)
A B C
1st week 4 2 3 4900
2nd week 3 3 2 4500
3rd week 4 3 4 5800

If A and B non-singular matrix then, which of the following is incorrect?


If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.


The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


The inverse of `[(1,cos alpha),(- cos alpha, -1)]` is ______.


If A = `[(-i, 0),(0, i)]`, then ATA is equal to


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.


If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×