English

If A = [101023121]and B=[123115247], then find a matrix X such that XA = B. - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.

Sum

Solution 1

A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` and B = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`

XA = B

Post multiplying by A–1, we get

XAA–1 = BA–1

∴ X = BA–1         ...(i)

|A| = `|(1, 0, 1),(0, 2, 3),(1, 2, 1)|`

= 1(2 – 6) – 0 + 1(0 – 2)

= – 4 – 2

= – 6 ≠ 0

∴ A–1 exists.

A11 = (– 1)1+1 M11 = `1 |(2, 3),(2, 1)|` = 1(2 – 6) = – 4

A12 = (– 1)1+2 M12 = `-1 |(0, 3),(1, 1)|` = –1(0 – 3) = 3

A13 = (– 1)1+3 M13 = `1 |(0, 2),(1, 2)|` = 1(0 – 2) = – 2

A21 = (– 1)2+1 M21 = `-1 |(0, 1),(2, 1)|` = –1(0 – 2) = 2

A22 = (– 1)2+2 M22 = `1 |(1, 1),(1, 1)|` = 1(1 – 1) = 0

A23 = (– 1)2+3 M23 = `-1 |(1, 0),(1, 2)|` = –1(2 – 0) = – 2

A31 = (– 1)3+1 M31 = `1 |(0, 1),(2, 3)|` = 1(0 – 2) = – 2

A32 = (– 1)3+2 M32 = `-1 |(1, 1),(0, 3)|` = –1(3 – 0) = – 3

A33 = (– 1)3+3 M33 = `1 |(1, 0),(0, 2)|` = 1(2 – 0) =  2

∴ The matrix of the co-factors is

[Aij]3×3 = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]`

= `[(-4, 3, -2),(2, 0, -2),(-2, -3, 2)]`

Now, adj A = `["A"_"ij"]_(3 xx 3)^"T"`

= `[(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]`

∴ A–1 = `1/|"A"| ("adj A")`

= `-1/6[(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]`

X = BA–1             ...[From (i)]

∴ X = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)] {(1/6) [(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]}`

= `(1)/(6) [(1, 2, 3),(1, 1, 5),(2, 4, 7)] [(4, -2, 2),(-3, 0, 3),(2, 2, -2)]`

= `(1)/(6) [(4 - 6 + 6, -2 + 0 + 6, 2 + 6 - 6),(4 - 3 + 10, -2 + 0 + 10, 2 + 3 - 10),(8 - 12 + 14, -4 + 0 + 14, 4 + 12 - 14)]`

∴ X = `(1)/(6)[(4, 4, 2),(11, 8, -5),(10, 10, 2)]`

shaalaa.com

Solution 2

Consider XA = B

∴ `X[(1, 0, 1),(0, 2, 3),(1, 2, 1)] = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`

By C3 – C1, we get

`[(1, 0, 0),(0, 2, 3),(1, 2, 0)] = [(1, 2, 2),(1, 1, 4),(2, 4, 5)]`

By `(1/2)C_2`, we get

`[(1, 0, 0),(0, 1, 3),(1, 1, 0)] = [(1, 1, 2),(1, 1/2, 4),(2, 2, 5)]`

By C3 – 3C2, we get

`[(1, 0, 0),(0, 1, 0),(1, 1, -3)] = [(1, 1, -1),(1, 1/2, 5/2),(2, 2, -1)]`

By `(-1/3)C_3`, we get

`[(1, 0, 0),(0, 1, 0),(1, 1, 1)] = [(1, 1, 1/3),(1, 1/2, -5/6),(2, 2, 1/3)]`

By C1 – C3 and C2 – C3, we get

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] = [(2/3, 2/3, 1/3),(11/6, 4/3, -5/6),(5/3, 5/3, 1/3)]`

∴ X = `1/6[(4, 4, 2),(11, 8, -5),(10, 10, 2)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Matrices - Exercise 2.5 [Page 72]

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of the following matrix.

`[(0,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the following matrix (if they exist):

`[(2,-3),(5,7)]`


Find the inverse of the following matrix (if they exist):

`[(2,1),(7,4)]`


Choose the correct answer from the given alternatives in the following question:

The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is


Choose the correct answer from the given alternatives in the following question:

The inverse of a symmetric matrix is


Choose the correct answer from the given alternatives in the following question:

For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


Adjoint of `[(2, -3),(4, -6)]` is _______


Choose the correct alternative.

If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


If A is a no singular matrix, then det (A–1) = _______


Fill in the blank :

If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______


Fill in the blank :

If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


`cos theta [(cos theta, sin theta),(-sin theta, cos  theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If `[(x - y - z),(-y + z),(z)] = [(0),(5),(3)]`, then the value of x, y and z are respectively ______


If the inverse of the matrix `[(alpha, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exists then find the value of α


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


Find the adjoint of matrix A = `[(6, 5),(3, 4)]`


If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


If A = [aij]2×2, where aij = i – j, then A = ______


Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method


Complete the following activity to verify A. adj (A) = det (A) I.

Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then

|A| = 2(____) – 0(____) + ( ) (____)

= 6 – 0 – 5

= ______ ≠ 0

Cofactors of all elements of matrix A are

A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),

A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,

A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,

A21 = _______, A22 = _______, A23 = _______,

A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),

A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = (  ),

A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.

Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`

adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`

A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]`  then, show that the inverse of A is A itself.


If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]`  then, find A.


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.


The inverse matrix of `((4/5,(-5)/12),((-2)/5,1/2))` is


Which of the following matrix has no inverse


If A = `[(1,2),(3,-5)]`, then A-1 = ?


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?


The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.


If A = `[(2, 0, -1), (5, 1, 0), (0, 1, 3)]` and A−1 = `[(3, -1, 1), (α, 6, -5), (β, -2, 2)]`, then the values of α and β are, respectively.


If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If A = `[(1,-1,1),(2,1,-3),(1,1,1)]`, then the sum of the elements of A-1 is ______.


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.


If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


Find the cofactors of the elements of the matrix

`[(-1, 2),(-3, 4)]`


If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.


A–1 exists if |A| = 0.


If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`


If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


The inverse of the matrix `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]` is ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2)  l_2` where AT is transpose of A.


If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.


If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.


If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×